Algebraic and Geometric Computation with Applications
代数和几何计算及其应用
基本信息
- 批准号:0914107
- 负责人:
- 金额:$ 19.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop algorithms and software in both algebraic-symbolic computation and computational geometry. The algorithms will be useful in a wide variety of problems of discrete mathematics, optimization, and computer science. First, regarding algebraic computation, the PI will use ideas from commutative algebra, real algebraic geometry, large-scale linear algebra, semidefinite analysis, and combinatorics to develop very fast algorithms that can solve large, but highly-structured systems of polynomial equations that carry an extra rich combinatorial structure (e.g., they are defined from a graph and their solutions correspond to colorings or matchings, or their group of automorphisms is very large). Although solving arbitrary systems of non-linear equations is a very hard problem in general, we have been able to provide fast solutions for unusually large polynomial systems with thousands of variables. The second area of work is more related to the geometry of convex polyhedra. It is common that software in Operations Research and Optimization requires a quick way to decide when a polyhedron is integrally feasible. Relying on computational geometry analysis, convex analysis and probability, the PI intends to develop fast heuristics for detecting the existence of a lattice point inside a polyhedron as well as for counting of all its lattice points. The PI hopes to incorporate these ideas to mathematical programming software.Software and Algorithms that solve systems of equations and inequalities or that decide whether a system of equations has a solution with integer numbers are extremely useful in all areas of mathematics, engineering, and beyond. Most of the problems we will consider are directly related to problems where one wishes to find an optimal arrangement or make best decisions with scarce resources. Examples include the problem of selecting the least expensive network connecting given sites or selecting the least expensive tour for visiting a given set of locations. Since such optimization problems appear in all areas of society (data mining, finances and economics, transport scheduling and circuit design, to name a few) but are very difficult to solve, researchers have explored special structures to be able to solve them in practice (e.g., in the case of theTSP) or settle for algorithms that compute near-optimal solutions. In our project we use non-traditional tools based on recent mathematical progress as a way to approach these very difficult problems. Last, but not least, the project also has a strong educational component for this project. The PI is committed to integrate this new knowledge within curriculum development, undergraduate research projects, training of graduate students and postdocs, and the development of new open source software tools for computational optimization. Several graduate and undergraduate students will play important roles in the project's development.
这个项目的目标是开发代数符号计算和计算几何的算法和软件。这些算法在离散数学、优化和计算机科学的各种问题中都很有用。首先,关于代数计算,PI将使用交换代数、实代数几何、大规模线性代数、半定分析和组合学的思想来开发非常快速的算法,这些算法可以求解具有额外丰富组合结构的大型但高度结构化的多项式方程系统(例如,它们从图中定义,其解对应于着色或匹配,或者它们的自同构群非常大)。虽然一般来说,求解任意非线性方程组是一个非常困难的问题,但我们已经能够为具有数千个变量的异常大的多项式系统提供快速解决方案。第二个领域的工作与凸多面体的几何形状更相关。运筹学和优化中的软件通常需要一种快速的方法来确定多面体何时是整体可行的。基于计算几何分析、凸分析和概率,PI打算开发快速的启发式方法来检测多面体中是否存在一个点阵点,并对其所有点阵点进行计数。PI希望将这些想法整合到数学编程软件中。求解方程组和不等式的软件和算法,或者决定方程组是否具有整数解的软件和算法,在数学、工程等各个领域都非常有用。我们将考虑的大多数问题都与人们希望在稀缺资源下找到最佳安排或做出最佳决策的问题直接相关。示例包括选择连接给定站点的最便宜的网络的问题,或选择访问给定位置集的最便宜的旅行的问题。由于这种优化问题出现在社会的各个领域(数据挖掘、金融和经济、运输调度和电路设计等),但很难解决,研究人员已经探索了特殊的结构,以便能够在实践中解决它们(例如,在tsp的情况下),或者满足于计算接近最优解决方案的算法。在我们的项目中,我们使用基于最近数学进展的非传统工具来解决这些非常困难的问题。最后,但并非最不重要的是,这个项目也有很强的教育成分。PI致力于将这些新知识整合到课程开发、本科生研究项目、研究生和博士后培训以及用于计算优化的新开源软件工具的开发中。一些研究生和本科生将在项目的发展中发挥重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesus De Loera其他文献
Jesus De Loera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesus De Loera', 18)}}的其他基金
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
A Two-Way Research Street: Geometric Algorithms in Optimization and Computer-Based Discrete Geometry
双向研究街:优化中的几何算法和基于计算机的离散几何
- 批准号:
1818969 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Bay Area Optimization Meeting 2017: From Data to Decisions.
2017 年湾区优化会议:从数据到决策。
- 批准号:
1643426 - 财政年份:2017
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Collaborative Research: Randomized and Structure-Based Algorithms in Commutative Algebra
合作研究:交换代数中的随机和基于结构的算法
- 批准号:
1522158 - 财政年份:2015
- 资助金额:
$ 19.45万 - 项目类别:
Continuing Grant
Convexity, Topology, Combinatorics and beyond: An international conference
凸性、拓扑学、组合学及其他:国际会议
- 批准号:
1068187 - 财政年份:2011
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
EMSW21-VIGRE: Focus on Mathematics
EMSW21-VIGRE:专注于数学
- 批准号:
0636297 - 财政年份:2007
- 资助金额:
$ 19.45万 - 项目类别:
Continuing Grant
Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
- 批准号:
0608785 - 财政年份:2006
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Computational Polyhedral Geometry: Applications in Algebra, Combinatorics, and Optimization
计算多面体几何:在代数、组合学和优化中的应用
- 批准号:
0309694 - 财政年份:2003
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Discrete and Computational Geometry Workshops at MSRI
MSRI 的离散和计算几何研讨会
- 批准号:
0336393 - 财政年份:2003
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Computational Studies in Polyhedral Convexity: Lattice Points and Triangulations
多面体凸性的计算研究:格点和三角剖分
- 批准号:
0073815 - 财政年份:2000
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Topological and Geometric Modeling and Computation of Structures and Functions in Single-Cell Omics Data
单细胞组学数据中结构和功能的拓扑和几何建模及计算
- 批准号:
2151934 - 财政年份:2022
- 资助金额:
$ 19.45万 - 项目类别:
Continuing Grant
Nonlinear Geometric Models: Algorithms, Analysis, and Computation
非线性几何模型:算法、分析和计算
- 批准号:
1908267 - 财政年份:2019
- 资助金额:
$ 19.45万 - 项目类别:
Continuing Grant
Collaborative Research: Geometric Analysis and Computation for Generative Models
协作研究:生成模型的几何分析和计算
- 批准号:
1818945 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis and Computation for Generative Models
协作研究:生成模型的几何分析和计算
- 批准号:
1819222 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Geometric and Topological Modeling and Computation of Biomolecular Structure, Function, and Dynamics
生物分子结构、功能和动力学的几何和拓扑建模与计算
- 批准号:
1721024 - 财政年份:2017
- 资助金额:
$ 19.45万 - 项目类别:
Standard Grant
Large scale parallelization for geometric computation and mathematical optimization
用于几何计算和数学优化的大规模并行化
- 批准号:
16H02785 - 财政年份:2016
- 资助金额:
$ 19.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Joint Correspondence Computation and Statistical Analysis of Geometric Models of Human Faces and Bodies
人脸与人体几何模型的联合对应计算与统计分析
- 批准号:
255664445 - 财政年份:2014
- 资助金额:
$ 19.45万 - 项目类别:
Research Grants
Dimension-Change Principle for Robust Geometric Computation
鲁棒几何计算的尺寸变化原理
- 批准号:
24650015 - 财政年份:2012
- 资助金额:
$ 19.45万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Physical, algebraic and geometric underpinnings of topological quantum computation
拓扑量子计算的物理、代数和几何基础
- 批准号:
EP/I038683/1 - 财政年份:2012
- 资助金额:
$ 19.45万 - 项目类别:
Research Grant
Adaptive Finite Element Methods for Multiscale Geometric PDE: Modeling, Analysis, and Computation
多尺度几何偏微分方程的自适应有限元方法:建模、分析和计算
- 批准号:
1109325 - 财政年份:2011
- 资助金额:
$ 19.45万 - 项目类别:
Continuing Grant














{{item.name}}会员




