Collaborative Research: Randomized and Structure-Based Algorithms in Commutative Algebra
合作研究:交换代数中的随机和基于结构的算法
基本信息
- 批准号:1522158
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Systems of multivariate polynomial equations are ubiquitous in optimization, statistics, biology, and other fields of science and engineering. Solving such systems is a cornerstone of computational algebra today and the main focus of this project. The project addresses fundamental problems in symbolic computation with multivariate polynomials, with particular interest in very large systems that appear, for example, in biological data modeling and data mining. Such systems are so large that they cannot be completely read into the computer's memory. This project proposes the use of probabilistic and statistical analysis to cleverly select and sample smaller subsystems that lead to the desired solution. The problems attacked are fundamental questions of practical relevance. The project will also have educational and training activities in the development of human resources. In addition to many students working with the investigators, the project includes a Summer School on the foundational mathematical concepts from the areas relevant to this interdisciplinary research project. The target audience is graduate students; the School will foster a sense of community among the students and enhance further interdisciplinary collaboration. This research project approaches the problem of solving systems of polynomial equations, and of finding generators for polynomial ideals using a probabilistic method -- focusing on providing low expected runtime and the use of random choices -- for computational algebra problems that have high worst case complexity. The project uses the underlying combinatorial structure of certain families of problems (e.g. polynomial system feasibility) for significant speed-up. The resulting algorithms and software will be of use in commutative algebra, statistics, optimization, graph theory, and other fields where large-scale systems of polynomial equations arise naturally. The project adapts to the problem under study a sampling technique that has been used in computational geometry and optimization. The theoretically expected running time will be linear in the number of input polynomials. There are several applications including statistics and optimization, where key applied methods rely on algorithms to compute such ideal generators. Furthermore, the research will increase the use of combinatorial structures in polynomial computational problems, in particular, for the calculation of Nullstellensatz infeasibility certificates and syzygies. Applications have been found in graph theory, and further applications are expected in combinatorics, coding theory, and systems biology.
多元多项式方程组在最优化、统计学、生物学等科学和工程领域中普遍存在。求解这类系统是当今计算代数的基石,也是这个项目的主要焦点。该项目解决了多变量多项式符号计算中的基本问题,尤其对出现在生物数据建模和数据挖掘中的超大型系统特别感兴趣。这样的系统太大了,以至于不能完全读入计算机的内存。该项目建议使用概率和统计分析来巧妙地选择和抽样较小的子系统,以实现所需的解决方案。所攻击的问题是具有实际意义的基本问题。该项目还将开展人力资源开发方面的教育和培训活动。除了许多学生与研究人员一起工作外,该项目还包括一个暑期班,介绍与这一跨学科研究项目相关领域的基本数学概念。目标受众是研究生;学院将在学生中培养社区意识,并进一步加强跨学科合作。这项研究项目探讨了求解多项式方程系统的问题,以及使用概率方法为具有高最坏情况复杂性的计算代数问题寻找多项式理想的生成器的问题--专注于提供较低的预期运行时间和随机选择的使用。该项目使用某些问题族的基本组合结构(例如,多项式系统可行性),以实现显著的加速。由此产生的算法和软件将用于交换代数、统计学、最优化、图论和其他自然产生大规模多项式方程系统的领域。该项目适应了正在研究的问题,这是一种已用于计算几何和优化的抽样技术。理论上期望的运行时间将与输入多项式的数量成线性关系。有几种应用,包括统计和优化,其中的关键应用方法依赖于算法来计算这样的理想生成器。此外,这项研究将增加组合结构在多项式计算问题中的使用,特别是在计算Nullstellensatz不可行性证书和合子时。已经在图论中找到了应用,并期望在组合学、编码理论和系统生物学中有更多的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesus De Loera其他文献
Jesus De Loera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesus De Loera', 18)}}的其他基金
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
A Two-Way Research Street: Geometric Algorithms in Optimization and Computer-Based Discrete Geometry
双向研究街:优化中的几何算法和基于计算机的离散几何
- 批准号:
1818969 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Bay Area Optimization Meeting 2017: From Data to Decisions.
2017 年湾区优化会议:从数据到决策。
- 批准号:
1643426 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Convexity, Topology, Combinatorics and beyond: An international conference
凸性、拓扑学、组合学及其他:国际会议
- 批准号:
1068187 - 财政年份:2011
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Algebraic and Geometric Computation with Applications
代数和几何计算及其应用
- 批准号:
0914107 - 财政年份:2009
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EMSW21-VIGRE: Focus on Mathematics
EMSW21-VIGRE:专注于数学
- 批准号:
0636297 - 财政年份:2007
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
- 批准号:
0608785 - 财政年份:2006
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Computational Polyhedral Geometry: Applications in Algebra, Combinatorics, and Optimization
计算多面体几何:在代数、组合学和优化中的应用
- 批准号:
0309694 - 财政年份:2003
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Discrete and Computational Geometry Workshops at MSRI
MSRI 的离散和计算几何研讨会
- 批准号:
0336393 - 财政年份:2003
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Computational Studies in Polyhedral Convexity: Lattice Points and Triangulations
多面体凸性的计算研究:格点和三角剖分
- 批准号:
0073815 - 财政年份:2000
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2331033 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309445 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309446 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209510 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152704 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2208339 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209509 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
- 批准号:
2230795 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant