POWRE: Applications of Recent Advances in Exponential Asymptotics
POWRE:指数渐近学最新进展的应用
基本信息
- 批准号:0074924
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2002-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motivated by theoretical as well as major practical interests, new and powerful tools have been developed in the last decade for understanding local properties of differential operators near singularities. The proposed research uses recent techniques and results of exponential asymptotics to address questions in the classification of ordinary differential equations in singular regions, as well as analytic properties of partial differential operators. Among the questions addressed are: (1a) finding necessary and sufficient criteria for an ordinary differential equation whose linear part has several regular singular points and is homogeneous, to be analytically equivalent to its linear part (in a domain which contains the singular points); (1b) finding necessary criteria for a nonlinear equation to be analytically equivalent to its linear (inhomogeneous) part in a neighborhood of one irregular singular point of rank 1; (2) finding necessary andsufficient conditions for analytic hypoellipticity of partial differential operators of type ``sum of squares'', with special focus on Treves' conjecture.This POWRE project is jointly supported by the MPS Office of Multidisciplinary Activities (OMA) and the Division of Mathematical Sciences (DMS).
在理论和主要实践兴趣的推动下,在过去十年中已经开发出新的和强大的工具来理解奇异点附近微分算子的局部性质。本研究利用指数渐近的最新技术和结果来解决奇异区域中常微分方程的分类问题,以及偏微分算子的解析性质。所讨论的问题包括:(1a)寻找一个常微分方程的线性部分有几个正则奇点且齐次的必要和充分准则,以解析等价于它的线性部分(在包含奇异点的域内);(1b)在一个秩为1的不规则奇点的邻域中,找到一个非线性方程解析等价于它的线性(非齐次)部分的必要准则;(2)找到“平方和”型偏微分算子解析亚椭圆性的充分必要条件,重点研究了Treves猜想。该power项目由MPS多学科活动办公室(OMA)和数学科学部(DMS)联合支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodica Costin其他文献
Rodica Costin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodica Costin', 18)}}的其他基金
Workshop on Analysis, Approximation Theory, Operator Theory and their Interactions
分析、近似理论、算子理论及其相互作用研讨会
- 批准号:
1800794 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
- 批准号:
2246779 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Applications for Recent Innovations in Causal Inference
因果推理最新创新的应用
- 批准号:
535090-2019 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Applications for Recent Innovations in Causal Inference
因果推理最新创新的应用
- 批准号:
535090-2019 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Recent Developments on Geometric Measure Theory and its Applications
几何测度理论及其应用的最新进展
- 批准号:
2001095 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Applications for Recent Innovations in Causal Inference
因果推理最新创新的应用
- 批准号:
535090-2019 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CBMS Conference:The Cahn-Hilliard Equation: Recent Advances and Applications
CBMS 会议:Cahn-Hilliard 方程:最新进展和应用
- 批准号:
1836403 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Workshop in Operator Theory : Recent Trends and Applications
算子理论研讨会:最新趋势和应用
- 批准号:
1802313 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Research Symposium and Workshop: Advanced Imaging Methods for Accurate Deformation, Motion and Shape Measurements: Recent Developments and Applications; held in Columbia, SC
研究研讨会和研讨会:用于精确变形、运动和形状测量的先进成像方法:最新发展和应用;
- 批准号:
0856430 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Studies of recent numerical optimization methods for optimal control problems and their applications
最优控制问题的最新数值优化方法及其应用研究
- 批准号:
18560429 - 财政年份:2006
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications to differential geometry associated with the recent progress in computer algebra
与计算机代数最新进展相关的微分几何应用
- 批准号:
18540104 - 财政年份:2006
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)