Improving Forecasts During Heavy Precipitation Events: Model Biases and Numerical Experiments
改进强降水事件期间的预测:模型偏差和数值实验
基本信息
- 批准号:0079425
- 负责人:
- 金额:$ 22.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Forecasting of heavy precipitation events remains one of the most difficult challenges in numerical weather prediction. The ability of numerical models to represent precipitation is complicated by the necessity to parameterize some precipitation while some is explicitly resolved. Furthermore, errors in precipitation forecasts have the potential to degrade model forecasts through latent heat release and other diabatic processes, especially during heavy precipitation. It is important to improve understanding of how errors in model precipitation forecasts might influence synoptic-scale forecasts. The problem of quantitative precipitation forecasting (QPF), in addition to significant socioeconomic relevance, holds important implications for the problem of atmospheric predictability. Numerical model QPF errors can promote forecast degradation via the influence of diabatic processes such as latent heat release on atmospheric dynamics and thermodynamics. A previous study by the Principal Investigator has documented errors in numerical forecasts during heavy precipitation, and demonstrated that these errors are consistent with model misrepresentation of latent heat release in the vicinity of a convective, cold-frontal rain band. The Principal Investigator proposes to accomplish the following specific objectives:1) Development of a climatology of operational model forecast biases for specific synoptic scenarios in which model representation of convection may limit forecast accuracy;2) Documentation of the physical basis for systematic biases in operational model behavior that relate to the representation of heavy precipitation;3) Examination of the degree to which model representation of lower-tropospheric, diabatically generated potential vorticity (PV) anomalies are sensitive to model representation of precipitation processes (both grid-scale and sub-grid-scale);4) Determination of which convective parameterization schemes yield the most realistic representation of diabatic PV modifications in both the lower and upper troposphere; 5) Exploration of modifications to model representations of precipitation that would improve forecasts of the dynamical feedbacks associated with latent heat release.Successful completion of this research could lead to better utilization of current numerical models by forecasters as well as lead to quantitative improvements in numerical models precipitation forecasts.
强降水预报仍然是数值天气预报中最困难的挑战之一。数值模式表示降水的能力是复杂的,因为需要对一些降水进行参数化,而对一些降水进行显式解析。此外,降水预报中的误差有可能通过潜热释放和其他非绝热过程而降低模式预报,特别是在强降水期间。重要的是要更好地了解模式降水预报中的误差可能如何影响天气尺度预报。定量降水预报问题除了具有重大的社会经济意义外,还对大气可预报性问题具有重要影响。数值模式的QPF误差可以通过潜热释放等非绝热过程对大气动力学和热力学的影响来促进预报退化。首席调查员之前的一项研究记录了强降水期间数值预报的错误,并证明这些错误与对流冷锋雨带附近潜热释放的模型错误描述一致。首席调查员建议完成以下具体目标:1)发展业务模式预报偏差的气候学,其中对流的模式表示可能限制预报精度;2)记录与强降水表示有关的业务模式行为中系统偏差的物理基础;3)检查低对流层、非绝热产生的位涡(PV)异常的模式表示对降水过程(网格尺度和次网格尺度)的模式表示的敏感程度;4)确定哪些对流参数化方案对低对流层和高层的非绝热涡度修改产生最真实的表示;5)探索对降水模式表示的修改,以改进与潜热释放有关的动态反馈预报。这项研究的成功完成将有助于预报员更好地利用现有的数值模式,并导致数值模式降水预报的量化改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Lackmann其他文献
Gary Lackmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Lackmann', 18)}}的其他基金
How Will Post-Landfall Tropical Cyclone Intensity and Impacts Respond to Climate Change?
热带气旋登陆后的强度和影响将如何应对气候变化?
- 批准号:
2141467 - 财政年份:2022
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
Extratropical Transition and Recurvature of Tropical Cyclones in a Changing Climate
气候变化中热带气旋的温带转变和回归
- 批准号:
1546743 - 财政年份:2016
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
How Will Global Warming Change the Storm Tracks? Investigating the Importance of Diabatic Processes using High-resolution Simulations
全球变暖将如何改变风暴路径?
- 批准号:
1007606 - 财政年份:2010
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
Improving the Representation of Organized Convection in Numerical Weather Prediction (NWP) Models
改进数值天气预报 (NWP) 模型中有组织对流的表示
- 批准号:
0603760 - 财政年份:2006
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
Dynamics of Heavy Precipitation over Mesoscale Mountains
中尺度山脉强降水动力学
- 批准号:
0344237 - 财政年份:2004
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
The Role of the Precipitation Mass Sink in Tropical Cyclone Dynamics
降水质量汇在热带气旋动力学中的作用
- 批准号:
0334427 - 财政年份:2003
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
Extending the Integration of Unidata Software and Data into Research, Education, and Forecasting at North Carolina State University
将 Unidata 软件和数据的集成扩展到北卡罗来纳州立大学的研究、教育和预测
- 批准号:
0086545 - 财政年份:2000
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
Dynamics and Predictability of Mesoscale Rainband in Lee Cyclones
里氏旋风中尺度雨带的动力学和可预测性
- 批准号:
9700626 - 财政年份:1997
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant
相似海外基金
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
Improving long term forecasts of tree growth in carbon farming projects
改善碳农业项目中树木生长的长期预测
- 批准号:
LP230100049 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Linkage Projects
Why have space weather forecasts not improved for over a decade?
为什么太空天气预报十多年来没有改善?
- 批准号:
NE/Y001052/1 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Research Grant
Air-pollution Innovation in Regional-forecasts utilising operational Satellite Applications and Technologies (AIRSAT)
利用卫星应用和技术(AIRSAT)进行区域预测的空气污染创新
- 批准号:
NE/Y005147/1 - 财政年份:2024
- 资助金额:
$ 22.09万 - 项目类别:
Research Grant
FinerForecasts - Biologically Driven Soft-Fruit Resource Optimisation, Labour & Yield Forecasts at Plant Granularity.
FinerForecasts - 生物驱动的软果资源优化、劳动力
- 批准号:
10072185 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Collaborative R&D
Improving Typhoon Track Forecasts through Physics-Based Bias Correction
通过基于物理的偏差校正改进台风路径预报
- 批准号:
23H01665 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Smarter Ensembles for solar wind forecasts
用于太阳风预报的智能集成系统
- 批准号:
2890054 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Studentship
Understanding and improving AMOC forecasts in inter-annual to decadal climate predictions
了解并改进 AMOC 在年际至十年间气候预测中的预测
- 批准号:
2890063 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Studentship
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
- 批准号:
2309367 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Standard Grant
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 22.09万 - 项目类别:
Continuing Grant














{{item.name}}会员




