Modular Forms and Related Topics
模块化表格和相关主题
基本信息
- 批准号:0090117
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
James has been exploring the arithmetic properties of the Fourier coefficients of modular forms of integral and half-integral weight from a theoretical and a computational point of view. His research has been especially focused on problems related to the Birch and Swinnerton-Dyer conjecture, Goldfeld's conjecture and to the Lang Trotter conjecture. He has been successful in proving results toward Goldfeld's conjecture and toward a weak form of the Birch and Swinnerton-Dyer conjecture. In addition, along with K. Ono he has been successful in proving a result concerning the behavior of the Selmer groups of quadratic twists of an elliptic curve. Recently, K. Murty and James have been conducting extensive investigations into certain generalizations of the Lang and Trotter conjecture from both a numerical and statistical point of view.James is planning to continue to explore the connections between modular forms and arithmetic geometry. In particular, he hopes to better understand the structure of Tate-Shafarevich groups of elliptic curves and the distribution of the coefficients of modular forms of integral and half-integral weight. James plans to proceed with both numerical and theoretical investigations into these matters
James一直在从理论和计算的角度研究整半整数权的模形式的傅里叶系数的算术性质。他的研究特别集中在与Birch和Swinnerton-Dyer猜想、Goldfeld猜想和朗特罗特猜想有关的问题上。他已经成功地证明了戈德菲尔德猜想和Birch和Swinnerton-Dyer猜想的弱形式的结果。此外,与K.Ono一起,他成功地证明了一个关于椭圆曲线的二次扭曲的Selmer群的行为的结果。最近,K.Murty和James从数值和统计的角度对Lang和Trotter猜想的某些推广进行了广泛的研究,James计划继续探索模形式和算术几何之间的联系。特别是,他希望更好地理解椭圆曲线的Tate-Shafarevich群的结构,以及整权和半整权的模形式的系数的分布。詹姆斯计划继续对这些问题进行数字和理论调查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin James其他文献
Frobenius distributions of elliptic curves in short intervals on average
- DOI:
10.1007/s11139-021-00449-0 - 发表时间:
2021-07-03 - 期刊:
- 影响因子:0.700
- 作者:
Anthony Agwu;Phillip Harris;Kevin James;Siddarth Kannan;Huixi Li - 通讯作者:
Huixi Li
Estimating Auction Equilibria using Individual Evolutionary Learning
使用个体进化学习估计拍卖均衡
- DOI:
10.36837/chapman.000053 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kevin James - 通讯作者:
Kevin James
Finite field elements of high order arising from modular curves
来自模曲线的高阶有限域元素
- DOI:
10.1007/s10623-008-9262-y - 发表时间:
2009-01-06 - 期刊:
- 影响因子:1.200
- 作者:
Jessica F. Burkhart;Neil J. Calkin;Shuhong Gao;Justine C. Hyde-Volpe;Kevin James;Hiren Maharaj;Shelly Manber;Jared Ruiz;Ethan Smith - 通讯作者:
Ethan Smith
Discrete Bernoulli convolutions: An algorithmic approach toward bound improvement
离散伯努利卷积:一种边界改进的算法方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Neil J. Calkin;Julia Davis;Michelle Delcourt;Zebediah Engberg;Jobby Jacob;Kevin James - 通讯作者:
Kevin James
Consistent Clustered Applications with Corfu
与 Corfu 一致的集群应用程序
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Medhavi Dhawan;Gurprit Johal;Jim Stabile;Vjekoslav Brajkovic;James Chang;K. Goyal;Kevin James;Zeeshan Lokhandwala;Anny Martínez;Roger Michoud;Maithem Munshed;Srinivas Neginhal;K. Spirov;M. Wei;S. Fritchie;Christopher J. Rossbach;Ittai Abraham;D. Malkhi - 通讯作者:
D. Malkhi
Kevin James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin James', 18)}}的其他基金
REU Site: Computation, Combinatorics and Number Theory.
REU 网站:计算、组合学和数论。
- 批准号:
0552799 - 财政年份:2006
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
2003 REU in Computational Number Theory and Combinatorics
2003 REU 计算数论和组合学
- 批准号:
0244001 - 财政年份:2003
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
REU in Computational Number Theory and Combinatorics.
REU 在计算数论和组合学中的应用。
- 批准号:
0139569 - 财政年份:2002
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
相似海外基金
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
2005654 - 财政年份:2020
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Building Bridges: Fifth EU/US Summer School on Automorphic Forms and Related Topics
搭建桥梁:第五届欧盟/美国自守形式及相关主题暑期学校
- 批准号:
1951791 - 财政年份:2020
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Treating multiple forms of age-related cognitive decline with cannabinoid compounds: efficacy and potential mechanisms
用大麻素化合物治疗多种形式的与年龄相关的认知衰退:功效和潜在机制
- 批准号:
433511 - 财政年份:2020
- 资助金额:
$ 5.2万 - 项目类别:
Operating Grants
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1854113 - 财政年份:2019
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Pathologic analysis of age-related diseases based on individual quantification of polyubiquitin chain forms
基于多聚泛素链形式个体定量的年龄相关疾病的病理分析
- 批准号:
19K07899 - 财政年份:2019
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel pathomechanisms and treatment approaches in Alzheimer’s disease and related forms of dementia
阿尔茨海默病和相关痴呆症的新病理机制和治疗方法
- 批准号:
nhmrc : 1136241 - 财政年份:2018
- 资助金额:
$ 5.2万 - 项目类别:
Research Fellowships
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1802058 - 财政年份:2018
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Novel pathomechanisms and treatment approaches in Alzheimer’s disease and related forms of dementia
阿尔茨海默病和相关痴呆症的新病理机制和治疗方法
- 批准号:
nhmrc : GNT1136241 - 财政年份:2018
- 资助金额:
$ 5.2万 - 项目类别:
Research Fellowships
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1701585 - 财政年份:2017
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant