Long Range Behavior in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程中的长程行为
基本信息
- 批准号:0099399
- 负责人:
- 金额:$ 11.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2004-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We want to investigate several projects in Dynamical Systems and in Partial Differential equations. We will also consider multi-particle systems that share properties with both/One unifying thread is that we would like to understand the relation between variational approaches and more geometric ones. In particular, we would like to produce proofs of diffusion that use geometric and variational methods and to extend results in dynamics obtained by variational methods to partial differential equations. An important tool for geometric methods is the theory of normally hyperbolic manifolds and we would like to extend it to Partial differentialequations and infinite particle systems.Sometimes, small short range causes may have large long term effects. For example, small periodic forces may build up large changes in energy. Some small changes in the local properties of a material may lead to the emergence of patterns that cover large distances. In other situations, however, local effects just average out.We would like to device a broad based array of methods (including numerical studies and geometric techniques)that can be used to decide whether build up or averaging occurs. We would also like to pay special attention tosome concrete models appearing in technological applications.
我们想研究动力系统和偏微分方程的几个项目。我们还将考虑多粒子系统,共享属性/一个统一的线程是,我们想了解变分方法和更多的几何之间的关系。特别是,我们要生产的扩散证明,使用几何和变分方法,并延长结果在动力学变分方法偏微分方程。几何方法的一个重要工具是正规双曲流形理论,我们想把它推广到偏微分方程和无限粒子系统。有时,小的短期原因可能会产生大的长期影响。例如,小的周期性力可以建立能量的大变化。材料局部属性的一些微小变化可能导致出现覆盖大距离的图案。然而,在其他情况下,局部效应只是平均化。我们想设计一个基础广泛的方法阵列(包括数值研究和几何技术),可以用来决定是否建立或平均化发生。我们还想特别关注一些技术应用中出现的具体模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael de la Llave其他文献
Localized Stable Manifolds for Whiskered Tori in Coupled Map Lattices with Decaying Interaction
- DOI:
10.1007/s00023-013-0253-9 - 发表时间:
2013-04-30 - 期刊:
- 影响因子:1.300
- 作者:
Daniel Blazevski;Rafael de la Llave - 通讯作者:
Rafael de la Llave
A Simple Proof of Gevrey Estimates for Expansions of Quasi-Periodic Orbits: Dissipative Models and Lower-Dimensional Tori
准周期轨道扩展的 Gevrey 估计的简单证明:耗散模型和低维环面
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Adrián P. Bustamante;Rafael de la Llave - 通讯作者:
Rafael de la Llave
Nonconmutative coboundary equations over integrable systems
可积系统上的非交换共界方程
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Rafael de la Llave;M. Saprykina - 通讯作者:
M. Saprykina
Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions
- DOI:
10.1134/s156035471801001x - 发表时间:
2018-01 - 期刊:
- 影响因子:1.4
- 作者:
Rafael de la Llave - 通讯作者:
Rafael de la Llave
Manifolds on the verge of a hyperbolicity breakdown.
流形处于双曲性崩溃的边缘。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:2.9
- 作者:
Àlex Haro;Rafael de la Llave - 通讯作者:
Rafael de la Llave
Rafael de la Llave的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael de la Llave', 18)}}的其他基金
Invariant Objects and Their Connections in Dynamical Systems: Rigorous Results, Computations, and Applications
动态系统中的不变对象及其连接:严格的结果、计算和应用
- 批准号:
1800241 - 财政年份:2018
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
Invariant objects in dynamical systems: Analysis and numerics
动力系统中的不变对象:分析和数值
- 批准号:
1500943 - 财政年份:2015
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
Beyond Hamilton-Jacobi in Avignon
超越阿维尼翁的汉密尔顿-雅可比
- 批准号:
1412782 - 财政年份:2014
- 资助金额:
$ 11.05万 - 项目类别:
Standard Grant
Analytic and numerical studies of long term behavior in dynamical systems and differential equations
动力系统和微分方程中长期行为的分析和数值研究
- 批准号:
1162544 - 财政年份:2012
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
- 批准号:
1233130 - 财政年份:2011
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
Thematic Program: Dynamics and Transport in Disordered Systems
专题项目:无序系统中的动力学与传输
- 批准号:
0963824 - 财政年份:2010
- 资助金额:
$ 11.05万 - 项目类别:
Standard Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
- 批准号:
0901389 - 财政年份:2009
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
Study of global behavior in Dynamical Systems and PDE's
动力系统和偏微分方程中全局行为的研究
- 批准号:
0354567 - 财政年份:2004
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
Analytical and Numerical Studies of Long Term Behavior
长期行为的分析和数值研究
- 批准号:
9802156 - 财政年份:1998
- 资助金额:
$ 11.05万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytic and Numerical Methods for the Study of Long Term Behavior
数学科学:研究长期行为的分析和数值方法
- 批准号:
9500869 - 财政年份:1995
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
相似海外基金
Impact of prenatal opioid exposure on long-range brain circuit connectivity and behavior
产前阿片类药物暴露对长程脑回路连接和行为的影响
- 批准号:
10163154 - 财政年份:2020
- 资助金额:
$ 11.05万 - 项目类别:
Long-range neuronal activity regulates subventricular zone neural stem cell behavior
远程神经元活动调节室下区神经干细胞行为
- 批准号:
554442-2020 - 财政年份:2020
- 资助金额:
$ 11.05万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Impact of prenatal opioid exposure on long-range brain circuit connectivity and behavior
产前阿片类药物暴露对长程脑回路连接和行为的影响
- 批准号:
10060057 - 财政年份:2020
- 资助金额:
$ 11.05万 - 项目类别:
Collaborative Research: RoL: FELS: EAGER: Determining the Interplay of Long- and Short-Range Interactions in Emergent Biological Collective Behavior
合作研究:RoL:FELS:EAGER:确定新兴生物集体行为中长程和短程相互作用的相互作用
- 批准号:
1838341 - 财政年份:2018
- 资助金额:
$ 11.05万 - 项目类别:
Standard Grant
Collaborative Research: RoL: FELS: EAGER: Determining the Interplay of Long- and Short-Range Interactions in Emergent Biological Collective Behavior
合作研究:RoL:FELS:EAGER:确定新兴生物集体行为中长程和短程相互作用的相互作用
- 批准号:
1838331 - 财政年份:2018
- 资助金额:
$ 11.05万 - 项目类别:
Standard Grant
Integrative Analysis of Long-range Top-down Cortical Circuit for Attentional Behavior
注意行为的长程自上而下皮层回路的综合分析
- 批准号:
9458405 - 财政年份:2017
- 资助金额:
$ 11.05万 - 项目类别:
On the lifespan and asymptotic behavior of solutions to systems of wave equations with nonlinear terms of long range effects
关于具有长程效应非线性项的波动方程组解的寿命和渐近行为
- 批准号:
15K04955 - 财政年份:2015
- 资助金额:
$ 11.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
- 批准号:
1233130 - 财政年份:2011
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant
A Hybrid Satellite and Short-Range Transceiver System for Combining Fine-Scale GPS Locations with Long-Distance Tracking to Monitor Wildlife Movements, Behavior and Mortality
混合卫星和短程收发器系统,将精细 GPS 位置与长距离跟踪相结合,监测野生动物的活动、行为和死亡率
- 批准号:
1063364 - 财政年份:2011
- 资助金额:
$ 11.05万 - 项目类别:
Standard Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
- 批准号:
0901389 - 财政年份:2009
- 资助金额:
$ 11.05万 - 项目类别:
Continuing Grant