Thematic Program: Dynamics and Transport in Disordered Systems
专题项目:无序系统中的动力学与传输
基本信息
- 批准号:0963824
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports US participants of Thematic Program: Dynamics and Transport in Disordered Systems at the Fields Institute in Toronto, Canada in the Spring 2011.It has been known for a long time that heat flows from hot bodies to cold ones, that differences in voltages generate currents. Even if macroscopically this is well studied in many contexts, it is not easy to understand these phenomena at the microscopic level.Several mathematical models have been proposed for the phenomena. Some of them based on probability theory and some of them are classical and deterministic.In recent times, there has been very good progress in both classes of models the mathematical phenomena discovered are eerily similar sometimes. The main goal of the special semester is to bring together specialists in both types of models to find common ground and to make sure that there are students who get trained in both points of view.
该奖项支持2011年春季在加拿大多伦多菲尔兹研究所进行的“无序系统动力学和传输”专题项目的美国参与者。很久以前人们就知道热量从热的物体流向冷的物体,电压的不同会产生电流。即使宏观上这在许多情况下都得到了很好的研究,但在微观层面上理解这些现象并不容易。对于这种现象,已经提出了几种数学模型。有些是基于概率论的,有些是经典的和确定性的。近年来,这两类模型都取得了很好的进展,发现的数学现象有时惊人地相似。这个特殊学期的主要目标是把这两种模式的专家聚集在一起,找到共同点,并确保有学生在这两种观点上都得到了训练。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael de la Llave其他文献
Localized Stable Manifolds for Whiskered Tori in Coupled Map Lattices with Decaying Interaction
- DOI:
10.1007/s00023-013-0253-9 - 发表时间:
2013-04-30 - 期刊:
- 影响因子:1.300
- 作者:
Daniel Blazevski;Rafael de la Llave - 通讯作者:
Rafael de la Llave
A Simple Proof of Gevrey Estimates for Expansions of Quasi-Periodic Orbits: Dissipative Models and Lower-Dimensional Tori
准周期轨道扩展的 Gevrey 估计的简单证明:耗散模型和低维环面
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Adrián P. Bustamante;Rafael de la Llave - 通讯作者:
Rafael de la Llave
Nonconmutative coboundary equations over integrable systems
可积系统上的非交换共界方程
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Rafael de la Llave;M. Saprykina - 通讯作者:
M. Saprykina
Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions
- DOI:
10.1134/s156035471801001x - 发表时间:
2018-01 - 期刊:
- 影响因子:1.4
- 作者:
Rafael de la Llave - 通讯作者:
Rafael de la Llave
Manifolds on the verge of a hyperbolicity breakdown.
流形处于双曲性崩溃的边缘。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:2.9
- 作者:
Àlex Haro;Rafael de la Llave - 通讯作者:
Rafael de la Llave
Rafael de la Llave的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael de la Llave', 18)}}的其他基金
Invariant Objects and Their Connections in Dynamical Systems: Rigorous Results, Computations, and Applications
动态系统中的不变对象及其连接:严格的结果、计算和应用
- 批准号:
1800241 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Invariant objects in dynamical systems: Analysis and numerics
动力系统中的不变对象:分析和数值
- 批准号:
1500943 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Analytic and numerical studies of long term behavior in dynamical systems and differential equations
动力系统和微分方程中长期行为的分析和数值研究
- 批准号:
1162544 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
- 批准号:
1233130 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
- 批准号:
0901389 - 财政年份:2009
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Study of global behavior in Dynamical Systems and PDE's
动力系统和偏微分方程中全局行为的研究
- 批准号:
0354567 - 财政年份:2004
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Long Range Behavior in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程中的长程行为
- 批准号:
0099399 - 财政年份:2001
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Analytical and Numerical Studies of Long Term Behavior
长期行为的分析和数值研究
- 批准号:
9802156 - 财政年份:1998
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytic and Numerical Methods for the Study of Long Term Behavior
数学科学:研究长期行为的分析和数值方法
- 批准号:
9500869 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似海外基金
NSF-BSF: C*-algebras and Dynamics Beyond the Elliott Program
NSF-BSF:艾略特纲领之外的 C* 代数和动力学
- 批准号:
2400332 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
REU Site: IUPUI REU Program in Mathematics with Applications to Medicine, Neuroscience, and Fluid Dynamics
REU 网站:IUPUI REU 数学及其在医学、神经科学和流体动力学应用中的项目
- 批准号:
2150108 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
NSF-BSF: Dynamics and Operator Algebras beyond the Elliott Classification Program
NSF-BSF:艾略特分类计划之外的动力学和算子代数
- 批准号:
2055771 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Interdisciplinary Research and Training at the Geophysical Fluid Dynamics Program
地球物理流体动力学项目的跨学科研究和培训
- 批准号:
1829864 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Coevolutionary program dynamics under non-stationary environments
非平稳环境下的协同进化程序动力学
- 批准号:
510886-2017 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
University Undergraduate Student Research Awards
U.S. Participation in the Centre de Recerca Matematica Research Program Operator Algebras: Dynamics and Interactions
美国参与 Center de Recerca Matematica 研究计划算子代数:动力学与相互作用
- 批准号:
1665118 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
APS Division of Fluid Dynamics Travel Support Program for Students and Early Career Scientists 2017-2019
2017-2019 年 APS 流体动力学部门学生和早期职业科学家旅行支持计划
- 批准号:
1802070 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
A comprehensive program in modern dynamics: flexibility, rigidity and low complexity systems
现代动力学综合课程:灵活性、刚性和低复杂性系统
- 批准号:
1602409 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Constructing mental training program to activating group dynamics.
构建心理训练计划,激活群体动力。
- 批准号:
16K16509 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacy
职业:响应旱地长期生态变化的土壤有机碳动态:碳循环研究和提高气候变化素养的综合计划
- 批准号:
1620476 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant