Invariant Objects and Their Connections in Dynamical Systems: Rigorous Results, Computations, and Applications

动态系统中的不变对象及其连接:严格的结果、计算和应用

基本信息

  • 批准号:
    1800241
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Many systems in nature are governed by deterministic rules. Nevertheless, the results of applying even simple rules many times may be complicated and hard to understand (think of a simple motion of a spoon in a cup of coffee; after a few repetitions the liquid is completely scrambled). It is well known that small disturbances can have rapid growth, as for example in the "butterfly effect" in meteorology. Other systems where complicated effects take place include the motions of small celestial bodies subject to the changing forces of the sun and the planets. In some cases (for example, in the motion of satellites) it is of interest to devise maneuvers that take advantage of the natural amplification of disturbances to accomplish big effects with small efforts. To understand such complicated behavior, this research project searches for pieces that move in an orderly way and that act as anchors and reference points for all the other motions. This allows systematic classification of the possible motions. To accomplish these goals, this project will employ methods from several parts of mathematics. The fact that an object behaves simply can be formulated as a functional equation that can be studied with rigorous mathematics using functional analysis and topology. One surprise in these studies is that delicate number-theoretic properties (for instance whether a frequency satisfies a polynomial equation with integer coefficients) play a practical role. The tools from functional analysis must be supplemented by a very strong geometric intuition. The project also aims to develop practical algorithms for calculation, so that the knowledge acquired in the theory can be made concrete. The mixture of tools (analysis, topology, geometry, and numerical algorithms) makes involvement in the project an effective training ground for students who can subsequently pursue either academic or industrial careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界中的许多系统都是由确定性规则控制的。然而,即使是简单的规则多次应用的结果也可能是复杂的,难以理解的(想想勺子在一杯咖啡中的简单运动;重复几次之后,液体完全被搅乱了)。众所周知,小的扰动可以迅速增长,例如气象学中的“蝴蝶效应”。 其他发生复杂影响的系统包括受太阳和行星变化力影响的小天体的运动。在某些情况下(例如,在卫星的运动中),设计利用扰动的自然放大以实现小努力大效果的机动是有意义的。为了理解这种复杂的行为,这个研究项目寻找以有序的方式移动的部件,并作为所有其他运动的锚和参考点。这允许对可能的运动进行系统分类。为了实现这些目标,这个项目将采用数学的几个部分的方法。事实上,一个对象的行为简单,可以制定为一个功能方程,可以研究与严格的数学使用功能分析和拓扑。在这些研究中,令人惊讶的是,微妙的数论性质(例如,频率是否满足整数系数的多项式方程)发挥了实际作用。从功能分析的工具,必须由一个非常强大的几何直观的补充。该项目还旨在开发实用的计算算法,以便将理论中获得的知识具体化。工具的混合(分析、拓扑、几何和数值算法)使参与该项目的学生成为一个有效的培训基地,他们可以随后从事学术或工业职业。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time dependent center manifold in PDEs
偏微分方程中随时间变化的中心流形
Stable manifolds to bounded solutions in possibly ill-posed PDEs
  • DOI:
    10.1016/j.jde.2019.10.042
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hon-Wing Cheng;Rafael de la Llave
  • 通讯作者:
    Hon-Wing Cheng;Rafael de la Llave
A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold
  • DOI:
    10.3934/dcds.2020166
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Gidea;Rafael de la Llave;T. M. Seara
  • 通讯作者:
    M. Gidea;Rafael de la Llave;T. M. Seara
Efficient and Reliable Algorithms for the Computation of Non-Twist Invariant Circles
高效可靠的非扭转不变圆计算算法
  • DOI:
    10.1007/s10208-021-09517-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    González, Alejandra;Haro, Àlex;de la Llave, Rafael
  • 通讯作者:
    de la Llave, Rafael
Analytic genericity of diffusing orbits in a priori unstable Hamiltonian systems
  • DOI:
    10.1088/1361-6544/ac50bb
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Qinbo Chen;R. de la Llave
  • 通讯作者:
    Qinbo Chen;R. de la Llave
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rafael de la Llave其他文献

Localized Stable Manifolds for Whiskered Tori in Coupled Map Lattices with Decaying Interaction
  • DOI:
    10.1007/s00023-013-0253-9
  • 发表时间:
    2013-04-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Daniel Blazevski;Rafael de la Llave
  • 通讯作者:
    Rafael de la Llave
A Simple Proof of Gevrey Estimates for Expansions of Quasi-Periodic Orbits: Dissipative Models and Lower-Dimensional Tori
准周期轨道扩展的 Gevrey 估计的简单证明:耗散模型和低维环面
Nonconmutative coboundary equations over integrable systems
可积系统上的非交换共界方程
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rafael de la Llave;M. Saprykina
  • 通讯作者:
    M. Saprykina
Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions
  • DOI:
    10.1134/s156035471801001x
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Rafael de la Llave
  • 通讯作者:
    Rafael de la Llave
Manifolds on the verge of a hyperbolicity breakdown.
流形处于双曲性崩溃的边缘。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Àlex Haro;Rafael de la Llave
  • 通讯作者:
    Rafael de la Llave

Rafael de la Llave的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rafael de la Llave', 18)}}的其他基金

Invariant objects in dynamical systems: Analysis and numerics
动力系统中的不变对象:分析和数值
  • 批准号:
    1500943
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Beyond Hamilton-Jacobi in Avignon
超越阿维尼翁的汉密尔顿-雅可比
  • 批准号:
    1412782
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Analytic and numerical studies of long term behavior in dynamical systems and differential equations
动力系统和微分方程中长期行为的分析和数值研究
  • 批准号:
    1162544
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
  • 批准号:
    1233130
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Thematic Program: Dynamics and Transport in Disordered Systems
专题项目:无序系统中的动力学与传输
  • 批准号:
    0963824
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
  • 批准号:
    0901389
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Study of global behavior in Dynamical Systems and PDE's
动力系统和偏微分方程中全局行为的研究
  • 批准号:
    0354567
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Long Range Behavior in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程中的长程行为
  • 批准号:
    0099399
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Analytical and Numerical Studies of Long Term Behavior
长期行为的分析和数值研究
  • 批准号:
    9802156
  • 财政年份:
    1998
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analytic and Numerical Methods for the Study of Long Term Behavior
数学科学:研究长期行为的分析和数值方法
  • 批准号:
    9500869
  • 财政年份:
    1995
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似海外基金

The Great Exhibitions and their Lost Indigenous Objects
伟大的展览及其失落的本土物品
  • 批准号:
    IN240100030
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Indigenous
The Anthropological Study on the Provenance of Repatriation of Ancestral Remains and Secret/ Sacred Objects to Indigenous Peoples in Australia and the Identification of Their Reburials.
关于向澳大利亚土著人民归还祖先遗骸和秘密/圣物的来源及其重新埋葬的鉴定的人类学研究。
  • 批准号:
    23K01024
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BioPlastic Lives: Developing a Technical and Social Understanding of Bioplastic Objects Through Investigating their Care, Ageing and Agency in a Museu
生物塑料的生命:通过在博物馆中研究生物塑料物品的护理、老化和代理,培养对生物塑料物品的技术和社会理解
  • 批准号:
    2882188
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Binary Compact Objects and their Progenitors
二进制紧凑对象及其祖先
  • 批准号:
    2205974
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Material-Code-Stack: Conserving Born-Digital Objects and their Infrastructures
材料代码堆栈:保护原生数字对象及其基础设施
  • 批准号:
    2709953
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Excavation of super-impossible objects and their mechanisms
超级不可能物体的挖掘及其机制
  • 批准号:
    21K19801
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
  • 批准号:
    2055668
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Religious Practices of Holy Objects and their Ongoing Unfoldment: Focusing on Changes in Processing Technology and Disposing Ways
圣物的宗教实践及其持续展开:以加工技术和处置方式的变化为中心
  • 批准号:
    21K01091
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
  • 批准号:
    2055669
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
RI: SMALL: Recognizing objects in images and their properties over time
RI:小:随着时间的推移识别图像中的对象及其属性
  • 批准号:
    2006820
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了