Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
基本信息
- 批准号:0901389
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstractde la LlaveThe main goal of this proposal is to devise methods that allow to make predictions of the long term (or the long range) behavior of dynamical systems or PDE. We plan to develop a broad array of tools (invariant manifolds, variational methods, numerical analysis) in such a way that they can work together. We are particularly interested in applications to instability in dynamical systems and to global behavior in ellipticpartial differential equations and in coupled networks. Many of the laws of nature are formulated as local interactions. One point in space and time affects only its close neighborhood. It can happen that these local interactions cancel each other out so that the global effect is small and that the systems remain kind of unaffected or it can happen that the local interactions reinforce each other andlead to large scale effects. The two alternatives do happen and they depend on very subtle effects (e.g. ratherdeep and abstract number theory is the key to very measurable effects). Even if the importance of the has been recognized by applied mathematicians for centuries, it is only very recently that a rich enough toolkit has been developed by many start tackling it. Different people, have been making different techniques to work together, and they have started producing results. As a witness to the interest, the PI of this proposal hasbeen co-organizer of special semesters in CRM (Barcelona) Fall 2008 and Fields institute (Spring 2011).
这个建议的主要目标是设计方法,允许作出预测的长期(或长期)的动力系统或PDE的行为。我们计划开发一系列广泛的工具(不变流形,变分方法,数值分析),以便它们可以一起工作。我们特别感兴趣的应用程序的不稳定性动力系统和全球行为的椭圆偏微分方程和耦合网络。自然界的许多法则都是以局部相互作用的形式表述的。空间和时间中的一个点只影响它的近邻。这些局部的相互作用可能会相互抵消,这样整体效应就很小,系统就不会受到影响,或者局部的相互作用可能会相互加强,导致大尺度效应。这两种选择确实发生了,而且它们依赖于非常微妙的效应(例如,相当深刻和抽象的数论是非常可测量的效应的关键)。尽管应用数学家们几个世纪以来就认识到了这一问题的重要性,但直到最近,才有足够丰富的工具箱被开发出来,许多人开始着手解决这一问题。不同的人一直在使用不同的技术来协同工作,他们已经开始产生结果。作为兴趣的见证,这个建议的PI已经在CRM(巴塞罗那)2008年秋季和菲尔兹研究所(2011年春季)的特别学期的共同组织者。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations
丢番图旋转的阿诺德舌尖可微分:数值研究和重正化群解释
- DOI:10.1007/s10955-011-0233-8
- 发表时间:2011
- 期刊:
- 影响因子:1.6
- 作者:de la Llave, Rafael;Luque, Alejandro
- 通讯作者:Luque, Alejandro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael de la Llave其他文献
Localized Stable Manifolds for Whiskered Tori in Coupled Map Lattices with Decaying Interaction
- DOI:
10.1007/s00023-013-0253-9 - 发表时间:
2013-04-30 - 期刊:
- 影响因子:1.300
- 作者:
Daniel Blazevski;Rafael de la Llave - 通讯作者:
Rafael de la Llave
A Simple Proof of Gevrey Estimates for Expansions of Quasi-Periodic Orbits: Dissipative Models and Lower-Dimensional Tori
准周期轨道扩展的 Gevrey 估计的简单证明:耗散模型和低维环面
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Adrián P. Bustamante;Rafael de la Llave - 通讯作者:
Rafael de la Llave
Nonconmutative coboundary equations over integrable systems
可积系统上的非交换共界方程
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Rafael de la Llave;M. Saprykina - 通讯作者:
M. Saprykina
Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions
- DOI:
10.1134/s156035471801001x - 发表时间:
2018-01 - 期刊:
- 影响因子:1.4
- 作者:
Rafael de la Llave - 通讯作者:
Rafael de la Llave
Manifolds on the verge of a hyperbolicity breakdown.
流形处于双曲性崩溃的边缘。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:2.9
- 作者:
Àlex Haro;Rafael de la Llave - 通讯作者:
Rafael de la Llave
Rafael de la Llave的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael de la Llave', 18)}}的其他基金
Invariant Objects and Their Connections in Dynamical Systems: Rigorous Results, Computations, and Applications
动态系统中的不变对象及其连接:严格的结果、计算和应用
- 批准号:
1800241 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Invariant objects in dynamical systems: Analysis and numerics
动力系统中的不变对象:分析和数值
- 批准号:
1500943 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Analytic and numerical studies of long term behavior in dynamical systems and differential equations
动力系统和微分方程中长期行为的分析和数值研究
- 批准号:
1162544 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
- 批准号:
1233130 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Thematic Program: Dynamics and Transport in Disordered Systems
专题项目:无序系统中的动力学与传输
- 批准号:
0963824 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Study of global behavior in Dynamical Systems and PDE's
动力系统和偏微分方程中全局行为的研究
- 批准号:
0354567 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Long Range Behavior in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程中的长程行为
- 批准号:
0099399 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Analytical and Numerical Studies of Long Term Behavior
长期行为的分析和数值研究
- 批准号:
9802156 - 财政年份:1998
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytic and Numerical Methods for the Study of Long Term Behavior
数学科学:研究长期行为的分析和数值方法
- 批准号:
9500869 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Orbifold Gromov-Witten理论研究
- 批准号:11171174
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
拓扑绝缘体中的强关联现象
- 批准号:11047126
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Numerical study on critical properties of topological quantum systems with broken translational symmetry
平动对称性破缺拓扑量子系统临界性质的数值研究
- 批准号:
22K03446 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical study of the bulk-edge correspondence in strongly correlated higher-order topological insulators
强相关高阶拓扑绝缘体体边对应的数值研究
- 批准号:
21K03395 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effective hamiltonian construction through combining numerical simulation with experimental approaches and its application to strongly correlated topological materials
通过数值模拟与实验方法相结合的有效哈密顿构造及其在强相关拓扑材料中的应用
- 批准号:
20H01850 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical study of critical phenomena in disordered topological quantum systems
无序拓扑量子系统中临界现象的数值研究
- 批准号:
19K14607 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analytical and numerical studies of gapless fractionalized phases and topological phases and their transformations
无间隙分段相和拓扑相及其变换的分析和数值研究
- 批准号:
1619696 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RUI: Numerical Studies of Topological Ordered Phases in Realistic Models
RUI:现实模型中拓扑有序相的数值研究
- 批准号:
1508290 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Numerical simulation of topological and exotic states of quantum matter (C01)
量子物质拓扑和奇异态的数值模拟(C01)
- 批准号:
276831846 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research Centres
Development around various type entropy as well as operator algebraic basic research on measurable dynamical system and topological dynamical system
围绕各类熵以及算子代数开展可测动力系统和拓扑动力系统的基础研究
- 批准号:
15K04910 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems
变分和拓扑方法:理论、应用、数值模拟和开放问题
- 批准号:
1158859 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant