Invariant objects in dynamical systems: Analysis and numerics

动力系统中的不变对象:分析和数值

基本信息

  • 批准号:
    1500943
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Many problems in the natural sciences are modeled by a system with a simple rule that gives the next state of the system as a function of the present one. It has become increasingly apparent that many of these rules lead to complicated behavior when applied repeatedly. This complicated behavior is often called "chaos". To understand the behavior of a system and make useful predictions is a deep mathematical problem. One possible approach is to find "landmarks". A landmark is a small subsystem that behaves in a simple manner and which anchors the behavior of the system. If enough of these landmarks can be found, they can provide a skeleton for the dynamics which gives a global understanding of the system itself. The plan is to develop systematic and accurate methods for the calculation of landmarks. Another goal is to prove theorems which show that the calculations satisfying some conditions are correct. It is planned to obtain results which show that if certain landmarks are found in some configurations (which can be verified with finite accuracy calculations) then conclusions can be obtained for all times. The hope is to make contact with concrete problems motivated by questions in solid state physics and chemistry. The work in the project will also be used as a training ground for graduate students, postdocs and visitors. For over 50 years, the most commonly used landmarks in dynamical systems have been normally hyperbolic manifolds and quasi-periodic orbits as well as their stable and unstable manifolds. Here, it is proposed to develop a systematic way of computing these objects theoretically as well as numerically. Another goal is to prove constructive existence theorems that validate approximate solutions and also to develop and implement fast and accurate algorithms. The unifying principle is to look for functional equations that describe the invariance and then use a variety of methods to try to solve them. The methods will vary from geometry to functional analysis. A further part of the proposed work is to begin studying special solutions in some infinite dimensional problems including partial differential equations and delay differential equations with state dependent delays.
自然科学中的许多问题都是由一个具有简单规则的系统建模的,该规则将系统的下一个状态作为当前状态的函数。 越来越明显的是,这些规则中的许多规则在重复应用时会导致复杂的行为。 这种复杂的行为通常被称为“混沌”。 理解一个系统的行为并做出有用的预测是一个深刻的数学问题。 一种可能的方法是找到“地标”。 地标是一个小的子系统,它以简单的方式运行,并锚定系统的行为。 如果能找到足够多的这些标志,它们就能为动态提供一个骨架,从而对系统本身有一个全面的了解。计划是制定系统和准确的地标计算方法。 另一个目标是证明定理,证明满足某些条件的计算是正确的。 计划获得的结果表明,如果在某些配置中发现某些地标(可以通过有限精度计算进行验证),则可以获得所有时间的结论。 希望能与固体物理和化学中的问题所激发的具体问题联系起来。 该项目的工作也将被用作研究生,博士后和游客的培训基地。 50多年来,动力系统中最常用的地标是通常的双曲流形和拟周期轨道以及它们的稳定和不稳定流形。 在这里,它建议开发一个系统的方法来计算这些对象的理论和数值。 另一个目标是证明建设性的存在定理,验证近似解,并开发和实现快速和准确的算法。 统一原则是寻找描述不变性的函数方程,然后使用各种方法来解决它们。这些方法将从几何分析到功能分析而有所不同。 进一步的工作是开始研究一些无穷维问题的特解,包括偏微分方程和具有状态依赖时滞的时滞微分方程。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations
  • DOI:
    10.1007/s00332-018-9461-2
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3
  • 作者:
    M. Gidea;R. Llave
  • 通讯作者:
    M. Gidea;R. Llave
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rafael de la Llave其他文献

Localized Stable Manifolds for Whiskered Tori in Coupled Map Lattices with Decaying Interaction
  • DOI:
    10.1007/s00023-013-0253-9
  • 发表时间:
    2013-04-30
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Daniel Blazevski;Rafael de la Llave
  • 通讯作者:
    Rafael de la Llave
A Simple Proof of Gevrey Estimates for Expansions of Quasi-Periodic Orbits: Dissipative Models and Lower-Dimensional Tori
准周期轨道扩展的 Gevrey 估计的简单证明:耗散模型和低维环面
Nonconmutative coboundary equations over integrable systems
可积系统上的非交换共界方程
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rafael de la Llave;M. Saprykina
  • 通讯作者:
    M. Saprykina
Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: a Simple Proof and Extensions
  • DOI:
    10.1134/s156035471801001x
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Rafael de la Llave
  • 通讯作者:
    Rafael de la Llave
Manifolds on the verge of a hyperbolicity breakdown.
流形处于双曲性崩溃的边缘。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Àlex Haro;Rafael de la Llave
  • 通讯作者:
    Rafael de la Llave

Rafael de la Llave的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rafael de la Llave', 18)}}的其他基金

Invariant Objects and Their Connections in Dynamical Systems: Rigorous Results, Computations, and Applications
动态系统中的不变对象及其连接:严格的结果、计算和应用
  • 批准号:
    1800241
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Beyond Hamilton-Jacobi in Avignon
超越阿维尼翁的汉密尔顿-雅可比
  • 批准号:
    1412782
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Analytic and numerical studies of long term behavior in dynamical systems and differential equations
动力系统和微分方程中长期行为的分析和数值研究
  • 批准号:
    1162544
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
  • 批准号:
    1233130
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Thematic Program: Dynamics and Transport in Disordered Systems
专题项目:无序系统中的动力学与传输
  • 批准号:
    0963824
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Analytical, topological and numerical methods in the study of long range behavior in dynamical systems and differential equations
研究动力系统和微分方程中长程行为的分析、拓扑和数值方法
  • 批准号:
    0901389
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Study of global behavior in Dynamical Systems and PDE's
动力系统和偏微分方程中全局行为的研究
  • 批准号:
    0354567
  • 财政年份:
    2004
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Long Range Behavior in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程中的长程行为
  • 批准号:
    0099399
  • 财政年份:
    2001
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Analytical and Numerical Studies of Long Term Behavior
长期行为的分析和数值研究
  • 批准号:
    9802156
  • 财政年份:
    1998
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analytic and Numerical Methods for the Study of Long Term Behavior
数学科学:研究长期行为的分析和数值方法
  • 批准号:
    9500869
  • 财政年份:
    1995
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似海外基金

SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
  • 批准号:
    2311379
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
The Great Exhibitions and their Lost Indigenous Objects
伟大的展览及其失落的本土物品
  • 批准号:
    IN240100030
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Indigenous
DDRIG: Reassembling Art, Science, and Technology: Goldsmithing, and the Making of Objects during the Renaissance and its Impact on Modern Science and Technology
DDRIG:重新组合艺术、科学和技术:文艺复兴时期的金匠和物品制造及其对现代科学技术的影响
  • 批准号:
    2341842
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Motion of objects in soils
土壤中物体的运动
  • 批准号:
    DP240100671
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Projects
Open-world computer vision by detecting and tracking hierarchical objects
通过检测和跟踪分层对象来实现开放世界计算机视觉
  • 批准号:
    DE240100967
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Early Career Researcher Award
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
  • 批准号:
    10081810
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Collaborative R&D
States of Clay: Integrated Scientific Approaches to Clay Bureaucratic Objects from Early Mesopotamia, 3700-2700 BCE
粘土状态:公元前 3700-2700 年早期美索不达米亚粘土官僚物品的综合科学方法
  • 批准号:
    AH/X001717/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Interaction Design for Circular Economy Based on the Dynamics of Subjective Value for Objects
基于客体主观价值动态的循环经济交互设计
  • 批准号:
    23H03685
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Connections between sound composition and visual art through the transformation of sound material into 3D objects and sonic spaces
通过将声音材料转换为 3D 对象和声音空间,声音创作与视觉艺术之间的联系
  • 批准号:
    2893455
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
The role and design of objects and environments in the lives of upper-limb prosthesis users
物体和环境在上肢假肢使用者生活中的作用和设计
  • 批准号:
    2883977
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了