Linear and Nonlinear Multichannel Scattering

线性和非线性多通道散射

基本信息

  • 批准号:
    0100490
  • 负责人:
  • 金额:
    $ 12.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-06-01 至 2005-05-31
  • 项目状态:
    已结题

项目摘要

There are two main topics of research in this proposal, first, thelarge time behaviour and scattering theory of nonlinear Schrodingerwaves off a potential term which supports many bound states. This leadsto the analysis of multichannel nonlinear scattering and metastabilityof hamiltonian dispersive equations. The second topic involves the study ofradiation damping for metastable mutltibreather solutions of the waveequation. The large time behaviour of the linearized wave equation aroundmultibreather solutions is analyzed; a theory to estimate the lifetimesof perturbed multibreather solutions is developed and applicationsto nonlinear optics, in particular optical guides with non-uniform diffractionprofiles.The use of optical devices and fibers in today's communication systemsmotivates some of the problems studied in this proposal. In particularwe concentrate on the problem of effects of defects and other irregularitiesin optical fibers on their transport properties. We also analyze somenovel optical devices made by modifying the medium in a way to achievebetter filtering of noise and interchannel interference.
本文主要研究两个问题:一是支持多束缚态的势项下非线性薛定谔波的大时行为和散射理论。这导致了对哈密顿色散方程的多通道非线性散射和亚稳态的分析。第二个主题涉及波方程亚稳态多呼吸解的辐射阻尼研究。分析了多呼吸解下线性化波动方程的大时态;本文提出了一种估计摄动多呼吸解寿命的理论,并将其应用于非线性光学,特别是具有非均匀衍射轮廓的光学波导。光学设备和光纤在当今通信系统中的使用激发了本提案中研究的一些问题。我们特别关注光纤中缺陷和其他不规则性对其输运特性的影响问题。我们还分析了一些通过改变介质来实现更好地滤除噪声和信道间干扰的新型光学器件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Avraham Soffer其他文献

Avraham Soffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Avraham Soffer', 18)}}的其他基金

The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
  • 批准号:
    2205931
  • 财政年份:
    2022
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
  • 批准号:
    1600749
  • 财政年份:
    2016
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
  • 批准号:
    1201394
  • 财政年份:
    2012
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
  • 批准号:
    0903651
  • 财政年份:
    2009
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics
线性和非线性波的散射理论以及孤子动力学
  • 批准号:
    0501043
  • 财政年份:
    2005
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Linear and Nonlinear Waves
线性和非线性波
  • 批准号:
    9706780
  • 财政年份:
    1997
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Mathematical Scienecs: Linear and Nonlinear Waves
数学科学:线性波和非线性波
  • 批准号:
    9401777
  • 财政年份:
    1994
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Phase-space Analysis and Scattering Theory of Shcrodinger Type Hamiltonians
数学科学:相空间分析和薛定谔型哈密顿量的散射理论
  • 批准号:
    8905772
  • 财政年份:
    1989
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Fellowship
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Research Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
  • 批准号:
    DP240101494
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Discovery Projects
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了