Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
基本信息
- 批准号:0903651
- 负责人:
- 金额:$ 20.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research is focused on understanding the mathematical aspects of soliton dynamics and related topics in wave propagation and scattering. The PI considers the nonlinear Schroedinger equation on one and three dimensions. For attractive nonlinearities localized in space solutions may exist, which can then move without dispersion, until they are perturbed. These class of equations play now a a critical role in describing optical devices, Bose-Einstein condensate fluids and other nonlinear dispersive problems in fluid dynamics and plasma physics. The equations being nonlinear, requires new techniques to understand the large time behavior of the solutions of this class of equations. Using the hydrodynamic formulation of Schroedinger equation it was possible to analyze in detail a completely new type of situations, in which a soliton solution is created through tunneling from a potential well. The prediction and the details of this soliton formation will be further studied. In particular, the method offers a new way of proving a-priori estimates on the solutions of nonlinear Schrodinger equation which are not of the standard energy estimates. A second part of the research involves the detailed decay in time of solutions of the wave equation on Schwarzschild and Kerr manifolds. In particular the decay rates as a function of the angular momentum of the initial data is pursued. This will provide a rigorous proof of a classical conjecture of Price in the theory of General Relativity.New processes involving optical devices are studied in detail. In particular one considers a situation in which light energy is located in a potential well, inside a properly active dielectric material. Then, the development of the localized energy is derived by a new mathematical formalism adapted to this situation. It is shown that soliton waves can emerge from the well, and the theory is capable of determining their size and speed. As such, it allows, by tuning the shape of the potential well and the incoming energy to produce solitons with desired profile, sometimes referred to as soliton guns. This approach has already been observed in some experiments based on previous works by the PI. A second part of the research is the mathematical analysis of wave propagation and decay on manifolds generated by black holes. The approach to this problem led a to a new, more general theory of solving integral equations of the Voltera type, and also led to a rigorous mathematical verification of some classical conjectures in the physics literature concerning the behavior of radiated waves off a black hole.
研究的重点是理解孤子动力学的数学方面和波传播和散射的相关主题。PI考虑一维和三维的非线性薛定谔方程。对于空间中局部的吸引非线性,可能存在解,然后解可以无色散地移动,直到它们被扰动。这类方程在描述光学器件、玻色-爱因斯坦凝聚流体以及流体动力学和等离子体物理中的其他非线性色散问题中起着重要作用。方程是非线性的,需要新的技术来理解这类方程的解的大时间行为。 使用薛定谔方程的流体动力学公式,可以详细分析一种全新类型的情况,其中孤子解是通过从势阱隧穿而产生的。这一孤子形成的预测和细节将进一步研究。特别地,该方法为证明非线性薛定谔方程解的非标准能量估计的先验估计提供了一种新的途径。第二部分的研究涉及详细的衰减时间的波动方程的解决方案Schwarzschild和克尔流形。特别是作为初始数据的角动量的函数的衰减率被追求。这将为广义相对论中普赖斯的一个经典猜想提供严格的证明。特别地,人们考虑光能位于适当活性电介质材料内部的势阱中的情况。然后,发展的局域化的能量是由一个新的数学形式,以适应这种情况。结果表明,孤立子波可以从井中产生,理论能够确定它们的大小和速度。因此,它允许通过调整势阱的形状和入射能量来产生具有期望轮廓的孤子,有时被称为孤子枪。这种方法已经在PI以前的工作基础上的一些实验中观察到。研究的第二部分是黑洞产生的流形上波的传播和衰减的数学分析。解决这个问题的方法导致了一个新的,更普遍的理论,解决积分方程的Voltera型,也导致了严格的数学验证的一些经典命题在物理文献中有关的行为辐射波了黑洞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avraham Soffer其他文献
Avraham Soffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avraham Soffer', 18)}}的其他基金
The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
- 批准号:
2205931 - 财政年份:2022
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
- 批准号:
1201394 - 财政年份:2012
- 资助金额:
$ 20.48万 - 项目类别:
Continuing Grant
Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics
线性和非线性波的散射理论以及孤子动力学
- 批准号:
0501043 - 财政年份:2005
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Linear and Nonlinear Multichannel Scattering
线性和非线性多通道散射
- 批准号:
0100490 - 财政年份:2001
- 资助金额:
$ 20.48万 - 项目类别:
Continuing Grant
Mathematical Scienecs: Linear and Nonlinear Waves
数学科学:线性波和非线性波
- 批准号:
9401777 - 财政年份:1994
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Phase-space Analysis and Scattering Theory of Shcrodinger Type Hamiltonians
数学科学:相空间分析和薛定谔型哈密顿量的散射理论
- 批准号:
8905772 - 财政年份:1989
- 资助金额:
$ 20.48万 - 项目类别:
Continuing Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
- 批准号:
2336506 - 财政年份:2024
- 资助金额:
$ 20.48万 - 项目类别:
Continuing Grant
Water dynamics via quasielastic neutron scattering on mechanical properties of multilevel hierarchical polymeric materials
通过准弹性中子散射的水动力学对多级分层聚合物材料机械性能的影响
- 批准号:
23K11712 - 财政年份:2023
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Atomic-level Imaging and Molecular Beam Scattering Studies of Interfacial Chemical Dynamics
界面化学动力学的原子级成像和分子束散射研究
- 批准号:
2313365 - 财政年份:2023
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Investigation of early-time dynamics of laser-produced carbon plasma by collective Thomson scattering
通过集体汤姆逊散射研究激光产生的碳等离子体的早期动力学
- 批准号:
22KJ2443 - 财政年份:2023
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Dynamics and scattering of vortices and vortex rings
涡流和涡环的动力学和散射
- 批准号:
2206016 - 财政年份:2022
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Development of 4D Operando Optical Scattering Microscopy to Track Ion Dynamics and Phase Transition in Battery Electrodes
开发 4D Operando 光学散射显微镜来跟踪电池电极中的离子动力学和相变
- 批准号:
2606669 - 财政年份:2021
- 资助金额:
$ 20.48万 - 项目类别:
Studentship
Neutron scattering studies of magnetic order and spin dynamics in two-dimensional van der Waals magnetic materials
二维范德华磁性材料中磁序和自旋动力学的中子散射研究
- 批准号:
2100741 - 财政年份:2021
- 资助金额:
$ 20.48万 - 项目类别:
Continuing Grant
Microscale dynamics and light scattering characteristics of ice crystals in contrails
凝结尾冰晶的微尺度动力学和光散射特性
- 批准号:
2593499 - 财政年份:2021
- 资助金额:
$ 20.48万 - 项目类别:
Studentship
Imaging of Element-Specific 3D Distribution Dynamics in Working Bimetallic Catalysts by in-situ Anomalous Small-Angle X-Ray Scattering
通过原位反常小角 X 射线散射对工作双金属催化剂中元素特异性 3D 分布动力学进行成像
- 批准号:
2002960 - 财政年份:2020
- 资助金额:
$ 20.48万 - 项目类别:
Standard Grant
Dynamics of solution interface investigated by multiorder stimulated Raman scattering in colliding droplet
碰撞液滴中多级受激拉曼散射研究溶液界面动力学
- 批准号:
19K05391 - 财政年份:2019
- 资助金额:
$ 20.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




