Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics
线性和非线性波的散射理论以及孤子动力学
基本信息
- 批准号:0501043
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics.Avraham SofferAbstract:The analysis of nonlinear evolution equations is the goal of this work. Nonlinear evolution equations which describe wave propagation are of fundamental importance in many fields of science and engineering. The nonlinear Schroedinger equation appears naturally in the study of many body quantum system, nonlinear optics and more. Mathematically, one is interested in finding the large time behavior of solutions for all initial data in a given class of functions, typically a Sobolev space. The previous works on evolution equations which have many channels of scattering , by the Investigator and collaborators, have led to major new tools which are now applied to different types of equations.Under suitable assumptions on the class of allowed nonlinearities one can now state the general conjecture about the large time behavior of the nonlinear Schroedinger equation. One expects that for all initial data in the standard Sobolev space, the asymptotic behavior will be given by a combination of independently moving solitons and a free wave. While this result is beyond our current capabilities, substantial progress has been made in the last few years, by the Investigator his collaborators and others, culminating in the proof of the above conjecture for small perturbations of widely separated solitons.It is planned to develop new techniques to deal for the first time with large perturbations of soliton states. This effort will draw on many and diverse fields of mathematics, including harmonic analysis, phase space methods of scattering theory, nonlinear analysis and more. The advances in this direction are expected to play an important role in our understanding of one of the most important nonlinear dynamical systems of wave interactions. It applies to Bose Einstein condensates in solid state physics, optical solitons in fibers and other optical devices, in the study of nonperturbative solutions to Quantum Field Theory and more. It also inspires and will inspire more new directions of research in the mathematical analysis of dispersive wave equations, and its relation to harmonic and spectral analysis.
线性和非线性波的散射理论及孤子动力学。摘要:非线性演化方程的分析是本研究的目标。描述波传播的非线性演化方程在许多科学和工程领域具有重要意义。非线性薛定谔方程自然地出现在许多体量子系统、非线性光学等领域的研究中。在数学上,人们感兴趣的是在给定的一类函数(通常是Sobolev空间)中找到所有初始数据的解的大时间行为。研究者和合作者先前对具有许多散射通道的演化方程的工作,已经导致了主要的新工具,现在应用于不同类型的方程。在允许的非线性类的适当假设下,现在可以对非线性薛定谔方程的大时间行为提出一般的猜想。人们期望,对于标准Sobolev空间中的所有初始数据,其渐近行为将由独立运动孤子和自由波的组合给出。虽然这一结果超出了我们目前的能力范围,但在过去几年中,研究者及其合作者和其他人取得了实质性进展,最终证明了上述关于广泛分离孤子的小扰动的猜想。计划开发新技术来首次处理孤子态的大扰动。这项工作将借鉴许多不同的数学领域,包括谐波分析、散射理论的相空间方法、非线性分析等等。在这个方向上的进展有望在我们理解波相互作用的最重要的非线性动力系统之一方面发挥重要作用。它适用于固体物理中的玻色爱因斯坦凝聚体,光纤和其他光学器件中的光孤子,量子场论的非摄动解的研究等等。它还启发并将启发色散波动方程的数学分析及其与谐波和谱分析的关系的更多新的研究方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avraham Soffer其他文献
Avraham Soffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avraham Soffer', 18)}}的其他基金
The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
- 批准号:
2205931 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Linear and Nonlinear Multichannel Scattering
线性和非线性多通道散射
- 批准号:
0100490 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Scienecs: Linear and Nonlinear Waves
数学科学:线性波和非线性波
- 批准号:
9401777 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Phase-space Analysis and Scattering Theory of Shcrodinger Type Hamiltonians
数学科学:相空间分析和薛定谔型哈密顿量的散射理论
- 批准号:
8905772 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Foundation of non-linear Donaldson-Thomas theory
非线性唐纳森-托马斯理论的基础
- 批准号:
23K19007 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Linear Optimization: Theory and Applications
线性优化:理论与应用
- 批准号:
RGPIN-2020-06846 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
- 批准号:
2149082 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Linear and nonlinear modeling of fundamental theory explaining the prescription system of Kampo (traditional Japanese medicine) formulas based on chemistry and data science
基于化学和数据科学的解释汉方(传统日本医学)处方系统的基础理论的线性和非线性建模
- 批准号:
22K06690 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
- 批准号:
2154408 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Rigorous construction of linear response theory for many-fermion systems interacting with environment and its applications
多费米子系统与环境相互作用的线性响应理论的严格构建及其应用
- 批准号:
20KK0304 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
MPS-Ascend: Representation Theory of General Linear Groups over Finite Local Principal Ideal Rings
MPS-Ascend:有限局部主理想环上的一般线性群表示论
- 批准号:
2213166 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Award
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual