The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
基本信息
- 批准号:2205931
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is in the field of scattering theory of general wave equations. The aim is to characterize the large-time behavior of solutions of complex-type nonlinear equations in mathematical physics, which describe wave propagation in quantum systems and nonlinear optics models, among others. Finding the possible asymptotic states of such systems is critical to both qualitative and quantitative understanding of the physical phenomena and to applications. For example, the fundamental question in quantum mechanics of finding the breakup components of a molecule that is perturbed by a laser pulse is of this type. Similarly, the energy loss of light pulses moving a long distance in an optical fibre and the effects of time dependent noise on the stability of quantum and optical devices are examples.The aim of this project is to find the asymptotic behavior and other properties of the solutions for a general class of nonlinear Schrödinger equations. A key part of the project is to find all possible asymptotic states. This is an exceedingly difficult task for nonlinear equations, and results of general nature are scarce. The complexity of the equations considered necessitates different analytical, computational, and numerical tools. A combination of modern functional analytic methods and physical insights will be developed. In the case of spherical symmetric initial data and perturbation term, which can also depend on time and space variables, the goal is to show that the solutions break into a free wave and a (weakly) localized part and to derive the properties of the localized part. The project includes the analytic and numerical study of kinetic equations with multiple ergodic components.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本课题属于一般波动方程的散射理论领域。目的是表征数学物理中复杂型非线性方程解的大时间行为,这些方程描述了量子系统和非线性光学模型中的波传播。找到这种系统可能的渐近状态对于物理现象的定性和定量理解以及应用都是至关重要的。例如,在量子力学中,寻找被激光脉冲扰动的分子的分解成分的基本问题就是这种类型的。同样,光脉冲在光纤中长距离移动的能量损失和时间依赖性噪声对量子和光器件稳定性的影响都是例子。本课题的目的是找出一类一般非线性Schrödinger方程解的渐近性质和其他性质。这个项目的一个关键部分是找到所有可能的渐近状态。对于非线性方程来说,这是一项极其困难的任务,而且一般性质的结果很少。考虑到方程的复杂性,需要不同的分析、计算和数值工具。将发展现代功能分析方法和物理见解的结合。在球对称初始数据和扰动项的情况下,它也可以依赖于时间和空间变量,目标是证明解分解成自由波和(弱)局部化部分,并推导出局部化部分的性质。该项目包括多遍历分量动力学方程的解析和数值研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avraham Soffer其他文献
Avraham Soffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avraham Soffer', 18)}}的其他基金
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
- 批准号:
1201394 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Soliton Dynamics and Scattering Theory
孤子动力学和散射理论
- 批准号:
0903651 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Scattering Theory for Linear and Nonlinear Waves and Soliton Dynamics
线性和非线性波的散射理论以及孤子动力学
- 批准号:
0501043 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Linear and Nonlinear Multichannel Scattering
线性和非线性多通道散射
- 批准号:
0100490 - 财政年份:2001
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Mathematical Scienecs: Linear and Nonlinear Waves
数学科学:线性波和非线性波
- 批准号:
9401777 - 财政年份:1994
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Sciences: Phase-space Analysis and Scattering Theory of Shcrodinger Type Hamiltonians
数学科学:相空间分析和薛定谔型哈密顿量的散射理论
- 批准号:
8905772 - 财政年份:1989
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
解开非线性色散和耗散偏微分方程解的高阶临界结构
- 批准号:
19H00638 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Asymptotic behavior of solutions to hyperbolic and dispersive equations with damping terms
具有阻尼项的双曲和色散方程解的渐近行为
- 批准号:
19K03596 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability analysis for planar traveling solutions for nonlinear dispersive equations
非线性色散方程平面行进解的稳定性分析
- 批准号:
17K05332 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotics of solutions for dispersive quasilinear problems
色散拟线性问题解的渐近性
- 批准号:
1700282 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Research on the structure of the resonant interaction and behavior/singularity of the solutions for nonlinear dispersive wave equations
非线性色散波动方程的共振相互作用结构和解的行为/奇异性研究
- 批准号:
16K17626 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on solitary wave solutions for nonlinear dispersive wave equations
非线性色散波动方程孤立波解的研究
- 批准号:
15K04968 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long time behavior of solutions of nonlinear dispersive equations
非线性色散方程解的长时间行为
- 批准号:
15K17570 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On solutions of critical nonlinear dispersive and dissipative equations
临界非线性色散和耗散方程的解
- 批准号:
15H03630 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




