Investigations in Model Theory
模型理论研究
基本信息
- 批准号:0100594
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Baldwin proposes investigations in stability theory, the model theory of algebra and finite model theory. Baldwin will continue to investigate the the construction of homogeneous universal models with respect to a notion of strong submodel. One application of this method links stability theory with probability on finite models by providing a technique for not only proving 0-1 laws but obtaining model theoretic properties of the almost sure theory. These model theoretic properties of the almost sure theory can be applied to problems in finite model theory. Baldwin has been a leader in the application of stability theory to the development of logic with finitely many variables. This work has, for the first time, provided serious links between the deep work of Cherlin, Harrington, Lachlan, and Zilber on homogeneous structures and the mainstream of finite model theory. Baldwin and Baizhanov are studying expansions of stable structures by arbitrary predicates; this is motivated by the earlier work with Benedikt on embedded finite model theory. Baldwin's earlier work with Holland has included applications in the area of algebra, specifically group theory, and in expansions of the complex numbers by an arbitrary subset. The present project will try to find some specific new structures which expand the complex numbers by subgroups of the multiplicative group.Most of Baldwin's work has been in model theory, a branch of mathematical logic. The general aim of this work is to understand `ordinary mathematics' at a higher level of abstraction. This abstraction allows the discovery of common features in widely different areas of mathematics, ranging from probability theory to combinatorics to algebraic geometry. This kind of work has been fruitful both in a better understanding of algebraic structures and in providing a background for investigations in database theory. In particular, Baldwin's work with his co-author Michael Benedikt of Lucent Technologies on `embedded finite model theory' has found limits on the expressibility of database queries. Baldwin will continue his educational work - primarily focusing on developing innovative and effective ways to prepare mathematics teachers. The educational work is connected with two other NSF sponsored programs.
鲍德温提出调查稳定性理论,模型理论的代数和有限模型理论。Baldwin将继续研究关于强子模型概念的同质通用模型的构造。这种方法的一个应用链接的稳定性理论与概率有限模型提供了一种技术,不仅证明0-1法律,但获得模型理论的性质几乎肯定的理论。 几乎处处理论的这些模型论性质可以应用于有限模型理论中的问题。Baldwin是将稳定性理论应用于多变量逻辑发展的领导者。这项工作,第一次,提供了严重的联系之间的深入工作的切尔林,哈灵顿,拉克兰,齐伯均匀结构和主流的有限模型理论。Baldwin和Baizhanov正在研究任意谓词的稳定结构的扩展;这是由早期与贝内迪克特在嵌入有限模型理论上的工作所激发的。鲍德温的早期工作与荷兰已包括应用领域的代数,特别是群论,并在扩大复杂的数字由任意子集。本项目将试图找到一些具体的新结构,扩大复杂的数字由子群的乘法group.Most鲍德温的工作一直在模型论,一个分支的数理逻辑。 这项工作的总目标是理解“普通数学”在更高的抽象层次。 这种抽象允许发现广泛不同的数学领域的共同特征,从概率论到组合数学到代数几何。 这种工作已经卓有成效,在更好地理解代数结构,并在数据库理论的调查提供了一个背景。特别是,Baldwin与他的合著者Lucent Technologies的Michael贝内迪克特在“嵌入式有限模型理论”方面的工作发现了数据库查询的可表达性的限制。鲍德温将继续他的教育工作-主要集中在开发创新和有效的方法来准备数学教师。 教育工作与其他两个NSF赞助的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Baldwin其他文献
Lactate dehydrogenase M<sub>4</sub> of an abyssal fish: Strategies for function at low temperature and high pressure
- DOI:
10.1016/0305-0491(75)90110-8 - 发表时间:
1975-09-15 - 期刊:
- 影响因子:
- 作者:
John Baldwin;K.B. Storey;P.W. Hochachka - 通讯作者:
P.W. Hochachka
Selection for catalytic efficiency of lactate dehydrogenase M<sub>4</sub>: Correlation with body temperature and levels of anaerobic glycolysis
- DOI:
10.1016/0305-0491(75)90112-1 - 发表时间:
1975-09-15 - 期刊:
- 影响因子:
- 作者:
John Baldwin - 通讯作者:
John Baldwin
Gill citrate synthase from an abyssal fish
- DOI:
10.1016/0305-0491(75)90114-5 - 发表时间:
1975-09-15 - 期刊:
- 影响因子:
- 作者:
P.W. Hochachka;K.B. Storey;John Baldwin - 通讯作者:
John Baldwin
Pelvic limb musculature in the emu Dromaius novaehollandiae (Aves: Struthioniformes: Dromaiidae): Adaptations to high‐speed running
鸸鹋 Dromaius novaehollandiae(鸟纲:Struthioniformes:Dromaiidae)的骨盆肢体肌肉组织:对高速奔跑的适应
- DOI:
10.1002/(sici)1097-4687(199810)238:1<23::aid-jmor2>3.0.co;2-o - 发表时间:
1998 - 期刊:
- 影响因子:1.5
- 作者:
A. Patak;John Baldwin - 通讯作者:
John Baldwin
On the Question of the Presence of Octopine in Normal Plant Cells and Crown Gall Tumours: Use of a Rapid Biochemical Assay for Quantifying Octopine in Plant Tissue Extracts
- DOI:
10.1016/s0044-328x(78)80229-3 - 发表时间:
1978-11-01 - 期刊:
- 影响因子:
- 作者:
John Baldwin;Peter Gresshoff - 通讯作者:
Peter Gresshoff
John Baldwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Baldwin', 18)}}的其他基金
FRG: Collaborative Research in Gauge Theory
FRG:规范理论的合作研究
- 批准号:
1952707 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAREER: Interactions between Floer Theory, Khovanov Homology, and Low-Dimensional Topology
职业:Floer 理论、Khovanov 同调和低维拓扑之间的相互作用
- 批准号:
1454865 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Invariants of bordered 3-manifolds and contact structures in Floer homology, connections with Khovanov homology, and applications
Floer 同调中的有界 3 流形和接触结构的不变量、与 Khovanov 同调的联系以及应用
- 批准号:
1406383 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Contact structures, open books, and connections between Heegaard Floer homology and the Khovanov-Rozansky link homology theories
Heegaard Floer 同调与 Khovanov-Rozansky 链接同调理论之间的联系结构、开放书籍以及联系
- 批准号:
1251064 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Contact structures, open books, and connections between Heegaard Floer homology and the Khovanov-Rozansky link homology theories
Heegaard Floer 同调与 Khovanov-Rozansky 链接同调理论之间的联系结构、开放书籍以及联系
- 批准号:
1104688 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Isomerizations of Isotopically Labeled Hydrocarbons
同位素标记的烃的异构化
- 批准号:
0514376 - 财政年份:2005
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Isomerizations of Isotopically Labeled Hydrocarbons
同位素标记的烃的异构化
- 批准号:
0211120 - 财政年份:2002
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Isomerizations of Isotopically Labeled Hydrocarbons
同位素标记的烃的异构化
- 批准号:
9902184 - 财政年份:1999
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Integrating theory and data to model evolution under a changing climate
整合理论和数据来模拟气候变化下的进化
- 批准号:
DP230102431 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Discovery Projects
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
- 批准号:
2348792 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Effective field theory and Physics Beyond the Standard Model
超越标准模型的有效场论和物理学
- 批准号:
2883677 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Studentship
WILDMOD: Model Theory of wild mathematical structures, new perspectives via geometries and positive logic.
WILDMOD:狂野数学结构的模型理论,通过几何和正逻辑的新视角。
- 批准号:
EP/Y027833/1 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Fellowship
Model theory of operators and noncommutative function theory
算子模型论和非交换函数论
- 批准号:
23KJ1070 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A formal group theory-based model in primates for studying interactive social behavior and its dysfunction
用于研究互动社会行为及其功能障碍的基于正式群体理论的灵长类动物模型
- 批准号:
10567456 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Model theory, Diophantine geometry, and automorphic functions
模型论、丢番图几何和自守函数
- 批准号:
EP/X009823/1 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Fellowship
Stability in Model Theory and Category Theory
模型论和范畴论的稳定性
- 批准号:
EP/X018997/1 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Research Grant
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
- 批准号:
2239737 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant