Conservation Laws for Multiphase Flow

多相流守恒定律

基本信息

  • 批准号:
    0102480
  • 负责人:
  • 金额:
    $ 23.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-15 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

Multiphase flow is a branch of fluid dynamics of considerable difficulty, importance, and interest. The defining equations result from averages of some primitive equation, such as the Navier-Stokes or Euler equations. Nonlinear terms in the primitive equations lead to new unknowns in the averaged equation and the need for closure relations. These are difficult to determine, or even to measure experimentally. Closure is nonunique, as different closures apply to different flow regimes, and different closures may define competing equations to describe the same flow regime. The different equations may be complementary in that they describe the same situation in differing levels of detail. They also may reflect unresolved differences of scientific opinion. For these multiple reasons, the analysis of the equations is of considerable importance to science. The proposal here is primarily concerned with methods of analysis that delimit or shed light on the closures that are valid descriptions of fluid flow.Multiphase flow, and more generally the study of turbulence, is one of the major unsolved problems of importance to physics and to engineering. Flow of oil, gas, and water mixtures in a pipeline or in the rocks of a petroleum reservoir provide examples of such flows. Thermal mixing layers in meteorology leading to formation of thunderstorms provide another example. The formation of salt domes in geological formations, the study of controlled fusion to provide ample energy sources, and the study of late stage supernovae, or stellar explosions are further examples. In all cases, the phenomena is too complex, detailed and varied to be described usefully at a fine level of detail. Just as with the process of addition of milk to coffee, the initial swirls of milk in the coffee are artistic and complex, but the coffee-milk mixture after stirring is better described by averages of coffee and milk. Such a study of averages of mixtures, and the appropriate equations is the purpose of this proposal. Because of the importance of the problem, many methods are used for the study of mixtures: experiment, theory and numerical simulation. The mathematical aspects of the equations describing the mixture also give an important window into this subject and will be the primary focus of this investigation.
多相流是流体力学的一个分支,具有相当大的难度、重要性和趣味性。定义方程由一些原始方程的平均值产生,例如纳维斯托克斯方程或欧拉方程。原始方程中的非线性项导致了平均方程中的新未知数,并需要闭合关系。这些都很难确定,甚至很难通过实验来衡量。闭合不是唯一的,因为不同的闭合适用于不同的流型,并且不同的闭合可能定义相互竞争的方程来描述相同的流型。不同的方程式可能是互补的,因为它们以不同的详细程度描述了相同的情况。它们还可能反映出尚未解决的科学观点分歧。由于这些多重原因,对这些方程的分析对科学具有相当重要的意义。这里的建议主要涉及分析方法,这些方法界定或阐明了有效描述流体流动的闭合。多相流,更广泛地说,对湍流的研究,是对物理和工程具有重要意义的主要未解决问题之一。石油、天然气和水的混合物在管道或储油层岩石中的流动就是这种流动的例子。气象学中的热混合层导致雷暴的形成是另一个例子。地质构造中盐丘的形成,提供充足能源的受控聚变的研究,以及晚期超新星或恒星爆炸的研究,都是进一步的例子。在所有情况下,这些现象都过于复杂、详细和多样,无法以精细的细节进行有用的描述。就像在咖啡中加入牛奶的过程一样,咖啡中最初的牛奶漩涡是艺术和复杂的,但搅拌后的咖啡和牛奶混合物更好地描述了咖啡和牛奶的平均值。这项建议的目的是研究混合物的平均值和适当的方程式。由于这一问题的重要性,人们采用了多种方法来研究混合物:实验、理论和数值模拟。描述混合物的方程的数学方面也为这一主题提供了一个重要的窗口,也将是本研究的主要焦点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Glimm其他文献

Computational approach to finite size and shape effects in iron nanomagnets
  • DOI:
    10.1016/j.jmmm.2007.05.041
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael McGuigan;J.W. Davenport;James Glimm
  • 通讯作者:
    James Glimm
The resummation of one particle lines
Linear augmented Slater‐type orbital method for free standing clusters
用于独立星团的线性增广Slater型轨道方法
  • DOI:
    10.1002/jcc.21138
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3
  • 作者:
    K. Kang;James W. Davenport;James W. Davenport;James Glimm;James Glimm;D. Keyes;M. McGuigan
  • 通讯作者:
    M. McGuigan
Radiation-coupled front-tracking simulations for laser-driven shock experiments
  • DOI:
    10.1016/j.na.2005.01.056
  • 发表时间:
    2005-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    Yongmin Zhang;R. Paul Drake;James Glimm;John W. Grove;David H. Sharp
  • 通讯作者:
    David H. Sharp

James Glimm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Glimm', 18)}}的其他基金

Mathematical Sciences: Internal Layers in Fluid Flow and Solid Deformation
数学科学:流体流动和固体变形的内层
  • 批准号:
    9732876
  • 财政年份:
    1998
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences:Industrial and Interdisciplinary Mathematics
数学科学:工业和跨学科数学
  • 批准号:
    9312098
  • 财政年份:
    1993
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Parallel Scientific Computing Research Environments for Mathematical Sciences
数学科学:数学科学的并行科学计算研究环境
  • 批准号:
    9301500
  • 财政年份:
    1993
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Waves and Chaotic Interfaces
数学科学:非线性波和混沌界面
  • 批准号:
    9201581
  • 财政年份:
    1992
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
CISE Research Instrumentation: Parallel Scientific Computing
CISE 研究仪器:并行科学计算
  • 批准号:
    9022124
  • 财政年份:
    1991
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Hyperbolic Analysis: Wave Interactionand Chaos
数学科学:双曲分析:波相互作用和混沌
  • 批准号:
    8901884
  • 财政年份:
    1989
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Equipment, 1989
数学科学研究设备,1989
  • 批准号:
    8902941
  • 财政年份:
    1989
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Waves: Theory and Computation
数学科学:非线性波:理论与计算
  • 批准号:
    8619856
  • 财政年份:
    1987
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Cooperative Research on Fundamental Solutions ofthe Nonlinear Conservation Laws of Oil Reservoir Simulation (Applied Mathematics)
美巴油藏模拟非线性守恒定律基本解合作研究(应用数学)
  • 批准号:
    8612605
  • 财政年份:
    1987
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
U.S.-Brazil Cooperative Research: Riemann Problems in Oil Reservoir Simulation (Mathematical Modelling)
美巴合作研究:油藏模拟中的黎曼问题(数学建模)
  • 批准号:
    8415209
  • 财政年份:
    1985
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant

相似海外基金

Scaling laws for aerodynamics of moving wings in the Martian atmosphere
火星大气中动翼空气动力学的标度定律
  • 批准号:
    DP240100294
  • 财政年份:
    2024
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Discovery Projects
Collaborative Research: DASS: Empirically Evaluating Data Fiduciary Privacy Laws
合作研究:DASS:实证评估数据信托隐私法
  • 批准号:
    2317115
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
  • 批准号:
    2303108
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
RFA-CE-23-006, Do state alcohol-related firearm laws reduce mortality? A multicomponent impact evaluation
RFA-CE-23-006,各州与酒精相关的枪支法是否会降低死亡率?
  • 批准号:
    10791372
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
Collaborative Research: SaTC: TTP: Medium: Defending the Supply Chain of Democracy: Towards a Cryptographically Verified and Authenticated Network of Laws
合作研究:SaTC:TTP:媒介:捍卫民主供应链:迈向经过密码验证和认证的法律网络
  • 批准号:
    2247829
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Physical laws to control and regulate composition of multi-component biomolecular condensates
控制和调节多组分生物分子凝聚物成分的物理定律
  • 批准号:
    10713887
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
Ensuring the Effectiveness of Anti-Discrimination Laws and Self-Examination Affirmative Action
确保反歧视法和自查平权行动的有效性
  • 批准号:
    23KJ0320
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Laws and Realities of Cooperation and Sharing in the Middle East: Partnership and Property Sharing
中东合作共享的法律与现实:合伙与财产共享
  • 批准号:
    23H00748
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
GRAIL (Guide to Regulation & AI Laws) A natural language process approach to discovery of AI regulations & laws.
GRAIL(监管指南
  • 批准号:
    10074174
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了