Geometric Analysis on complete aspherical spaces
完全非球面空间的几何分析
基本信息
- 批准号:0102552
- 负责人:
- 金额:$ 9.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: DMS-0102552The principal investigator studies complete aspherical spaces with particular emphasis on the rigidity of local splitting structures and the minimal volume problem. Dr. Cao intends to continue his work on Gromov's minimal volume gap conjecture jointly with his coauthors. Using the F-structure theory developed by Cheeger and Gromov and the heat flow, he would like to study the minimal volume gap conjecture for complete aspherical manifolds. The investigator hopes to show that if a compact nonpositively curved manifold $M$ is homotopy equivalent to a generalized graph-manifold, then $M$ must be a generalized graph-manifold with vanishing minimal volume as well. In addition, Cao plans to continue his study of the sign of the Euler number of compact aspherical manifolds. This project focuses on the study of global geometric shape of aspherical spaces. The examples of aspherical spaces include flat tires and surfaces with more than two holes, such as pretzels. There are also examples of higher dimensional aspherical spaces. Our universe can be viewed a 3-dimensional aspherical space. Dr. Cao is trying to investigate diameter, volume, spectrum and other geometric data of those spaces. Cao has also been interested in the study of the shortest closed curves on non-positively curved spaces. He has already shown that two such surfaces with possible cusps are isometric if and only if the data of lengths of all shortest closed curves on the two surfaces are identical. The data of lengths of all shortest closed curves on a closed surface M is called the marked length spectrum of the space M. The study of marked length spectrum on spaces with boundaries has a number of applications in modern industry and geological sciences.
提案编号:DMS-0102552主要研究者研究完整的非球面空间,特别强调局部分裂结构的刚度和最小体积问题。曹博士打算继续他的工作,格罗莫夫的最小体积间隙猜想与他的合作者联合。利用Cheeger和Gromov发展的F结构理论和热流,他想研究完备非球面流形的最小体积间隙猜想。研究者希望证明,如果紧致非正曲流形M同伦等价于广义图流形,则M也必是极小体积为零的广义图流形。 此外,曹计划继续研究紧致非球面流形的欧拉数的符号。本计画主要研究非球面空间的整体几何形状。非球面空间的例子包括轮胎漏气和表面有两个以上的孔,如椒盐卷饼。也有高维非球面空间的例子。我们的宇宙可以看作是一个三维的非球面空间。曹博士试图研究这些空间的直径、体积、光谱和其他几何数据。曹还对非正曲空间上的最短闭曲线的研究感兴趣。他已经表明,两个这样的表面可能的尖点等距当且仅当数据的长度最短的封闭曲线的两个表面是相同的。闭曲面M上所有最短闭曲线的长度数据称为空间M的标长谱。带边界空间上的标长谱的研究在现代工业和地质科学中有许多应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianguo Cao其他文献
Design and synthesis of alepterolic acid and 5-fluorouracil conjugates as potential anticancer agents
作为潜在抗癌药物的阿普特罗酸和 5-氟尿嘧啶缀合物的设计和合成
- DOI:
10.1016/j.mencom.2022.05.024 - 发表时间:
2022-05 - 期刊:
- 影响因子:1.9
- 作者:
Xin Jin;Tingting Yang;Chenlu Xia;Nina Wang;Zi Liu;Jianguo Cao;Liang Ma;Guozheng Huang - 通讯作者:
Guozheng Huang
DFMG attenuates the activation of macrophages induced by co-culture with LPC-injured HUVE-12 cells via Hunan Normal University
湖南师范大学 DFMG 减弱与 LPC 损伤的 HUVE-12 细胞共培养诱导的巨噬细胞活化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.4
- 作者:
Cong Li;Shuting Yang;Yong Zhang;Jianguo Cao;Xiaohua Fu - 通讯作者:
Xiaohua Fu
Effects of VBMDMP on the reversal of cisplatin resistance in human lung cancer A549/DDP cells.
VBMDMP 对逆转人肺癌 A549/DDP 细胞顺铂耐药的影响。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Cheng;Yang Zhang;Zhi;Q. Qiu;Jianguo Cao;Zhi - 通讯作者:
Zhi
Estimates for the ∂̄-Neumann problem and nonexistence of C 2 Levi-flat hypersurfaces in C Pn
∂̄-Neumann 问题的估计以及 C Pn 中不存在 C 2 Levi 平坦超曲面
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Jianguo Cao;Mei;Lihe Wang - 通讯作者:
Lihe Wang
5, 7-Dimethoxyflavone sensitizes TRAIL-induced apoptosis through DR5 upregulation in hepatocellular carcinoma cells
5, 7-二甲氧基黄酮通过 DR5 上调对肝细胞癌细胞中 TRAIL 诱导的细胞凋亡敏感
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3
- 作者:
Jian;Jianguo Cao;L. Tian;Fei Liu - 通讯作者:
Fei Liu
Jianguo Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianguo Cao', 18)}}的其他基金
Global Riemannian Geometry and Analysis of curved spaces
全局黎曼几何与弯曲空间分析
- 批准号:
0706513 - 财政年份:2007
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Complex Finsler Geometry and Related Topics
复杂芬斯勒几何及相关主题
- 批准号:
0713348 - 财政年份:2007
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Geometric Analysis on Semi-Hyperbolic Spaces with Variable Curvature
变曲率半双曲空间的几何分析
- 批准号:
0405385 - 财政年份:2004
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Geometric Analysis on Manifolds of Non-positive Curvature
非正曲率流形的几何分析
- 批准号:
9803230 - 财政年份:1998
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Geodesics and Minimal Surfaces in Manifolds with Non-Posititve Curvature
数学科学:测地线和非正曲率流形中的极小曲面
- 批准号:
9303711 - 财政年份:1993
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Geodesics and Minimal Surfaces in Manifolds with Non-negative Curvature
数学科学:测地线和非负曲率流形中的极小曲面
- 批准号:
9102212 - 财政年份:1991
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Development of multi omics data analysis method using short/long read integration and complete human reference sequences
使用短/长读长集成和完整的人类参考序列开发多组学数据分析方法
- 批准号:
23K11300 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on an innovative quantitative analysis system for radioactive waste based on a complete gamma-ray visualization technique
基于完整伽马射线可视化技术的放射性废物创新定量分析系统研究
- 批准号:
23H01898 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Machine learning-based alignment-free methodology for complete genome analysis
基于机器学习的免比对方法,用于完整基因组分析
- 批准号:
DGECR-2022-00370 - 财政年份:2022
- 资助金额:
$ 9.5万 - 项目类别:
Discovery Launch Supplement
Analysis of Developmental Arrest and Treatment Resistance in High-risk T-ALL
高危 T-ALL 发育停滞和治疗抵抗分析
- 批准号:
10387279 - 财政年份:2022
- 资助金额:
$ 9.5万 - 项目类别:
Analysis of Developmental Arrest and Treatment Resistance in High-risk T-ALL
高危 T-ALL 发育停滞和治疗抵抗分析
- 批准号:
10573148 - 财政年份:2022
- 资助金额:
$ 9.5万 - 项目类别:
Machine learning-based alignment-free methodology for complete genome analysis
基于机器学习的免比对方法,用于完整基因组分析
- 批准号:
RGPIN-2022-03547 - 财政年份:2022
- 资助金额:
$ 9.5万 - 项目类别:
Discovery Grants Program - Individual
Study of vector fields and development of convex analysis on complete geodesic spaces
矢量场的研究和完全测地空间凸分析的发展
- 批准号:
21K03316 - 财政年份:2021
- 资助金额:
$ 9.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis and Therapeutic Targeting of the Linear-Ubiquitination Pathway in Hodgkin Lymphoma
霍奇金淋巴瘤线性泛素化途径的分析和治疗靶向
- 批准号:
10622597 - 财政年份:2021
- 资助金额:
$ 9.5万 - 项目类别:
Developing statistical image analysis tools for non-invasive monitoring of anemia in low birth weight infants
开发统计图像分析工具,用于低出生体重儿贫血的无创监测
- 批准号:
10279575 - 财政年份:2021
- 资助金额:
$ 9.5万 - 项目类别:
Developing statistical image analysis tools for non-invasive monitoring of anemia in low birth weight infants
开发统计图像分析工具,用于低出生体重儿贫血的无创监测
- 批准号:
10452686 - 财政年份:2021
- 资助金额:
$ 9.5万 - 项目类别: