Applications of Moving Frames
移动框架的应用
基本信息
- 批准号:0103944
- 负责人:
- 金额:$ 16.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0103944OlverThe project will focus on the applications of the proposer's new equivariant theory of moving frames for general Lie group actions. Particular emphasis will be in three key applied directions: analysis and applications of invariant variational problems and invariant partial differential equations in geometry and physics, the design of symmetry-preserving numerical algorithms for approximating differential invariants and integrating invariant differential equations, and object recognition and symmetry detection in computer vision based on differential invariant and noise-resistant joint invariant signatures. The project will include further development of the underlying moving frame theory, particularly in the case of infinite-dimensional Lie pseudo-groups, and the formulation of a proper geometrical foundation for multivariate numerical approximation and interpolation.The recognition and exploitation symmetry is an essential tool in modern mathematics and its applications. This project will continue to develop a new, powerful geometric approach, known as moving frames, to systems that have continuous symmetry. The modern moving frame theory developed by the PI has already witnessed a remarkable range of new applications, including computer vision, for object recognition and symmetry detection, a geometric approach to classical algebra and invariant theory, as well as the design of numerical integration schemes that preserve the underlying symmetry of the problem to be solved. The combination of analytical, geometrical, and numerical advances, coupled with practical applications has proved to be a particularly potent blend of theory and practical tools. This research project will continue the rapid development and application of the moving frame method, concentrating on theoretical developments tied to applications in computer vision, in geometry and physics, and in symmetry-based numerical integration methods
0103944Olver 该项目将重点关注提议者的新运动框架等变理论在一般李群作用中的应用。特别强调三个关键应用方向:几何和物理中不变变分问题和不变偏微分方程的分析和应用,用于逼近微分不变量和积分不变微分方程的保对称数值算法的设计,以及基于微分不变和抗噪声联合不变特征的计算机视觉中的目标识别和对称性检测。该项目将包括进一步发展基础移动框架理论,特别是在无限维李伪群的情况下,以及为多元数值逼近和插值制定适当的几何基础。识别和利用对称性是现代数学及其应用的重要工具。 该项目将继续开发一种新的、强大的几何方法,称为移动框架,用于具有连续对称性的系统。 PI 开发的现代移动框架理论已经见证了一系列引人注目的新应用,包括用于物体识别和对称性检测的计算机视觉、经典代数和不变量理论的几何方法,以及保留待解决问题的基本对称性的数值积分方案的设计。 分析、几何和数值进步与实际应用的结合已被证明是理论和实用工具的特别有效的结合。该研究项目将继续移动框架方法的快速发展和应用,重点关注与计算机视觉、几何和物理以及基于对称的数值积分方法应用相关的理论发展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Olver其他文献
Peter Olver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Olver', 18)}}的其他基金
Geometric Analysis for Classification and Reassembly of Broken Bones
用于断骨分类和重组的几何分析
- 批准号:
1816917 - 财政年份:2018
- 资助金额:
$ 16.04万 - 项目类别:
Standard Grant
S4 Conference on Symmetry, Separation, Super-integrability and Special Functions
S4对称性、分离性、超可积性和特殊函数会议
- 批准号:
1013877 - 财政年份:2010
- 资助金额:
$ 16.04万 - 项目类别:
Standard Grant
School and Conference in Symmetries and Integrability of Difference Equations
差分方程的对称性和可积性学校和会议
- 批准号:
0737765 - 财政年份:2007
- 资助金额:
$ 16.04万 - 项目类别:
Standard Grant
Workshop on Group Theory and Numerical Analysis
群论与数值分析研讨会
- 批准号:
0313441 - 财政年份:2003
- 资助金额:
$ 16.04万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Physics and Continuum Mechanics
数学科学:数学物理和连续介质力学
- 批准号:
9204192 - 财政年份:1992
- 资助金额:
$ 16.04万 - 项目类别:
Continuing Grant
相似国自然基金
柔嫩艾美耳球虫子孢子入侵关键结构 Moving Junction 的分子基础与功能研究
- 批准号:31201699
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 16.04万 - 项目类别:
Salary Programs
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
$ 16.04万 - 项目类别:
Collaborative R&D
Moving the dial on economic inactivity to build inclusive futures across Northern Ireland
扭转经济不活跃的局面,在整个北爱尔兰建立包容性的未来
- 批准号:
ES/Y502388/1 - 财政年份:2024
- 资助金额:
$ 16.04万 - 项目类别:
Research Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
- 批准号:
10092420 - 财政年份:2024
- 资助金额:
$ 16.04万 - 项目类别:
Collaborative R&D
Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
- 批准号:
24K08316 - 财政年份:2024
- 资助金额:
$ 16.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
- 批准号:
2350423 - 财政年份:2024
- 资助金额:
$ 16.04万 - 项目类别:
Standard Grant
Scaling laws for aerodynamics of moving wings in the Martian atmosphere
火星大气中动翼空气动力学的标度定律
- 批准号:
DP240100294 - 财政年份:2024
- 资助金额:
$ 16.04万 - 项目类别:
Discovery Projects
ERI: Fault-Tolerant Monitoring of Moving Clusters of Targets using Collaborative Unmanned Aerial Vehicles
ERI:使用协作无人机对移动目标群进行容错监控
- 批准号:
2301707 - 财政年份:2023
- 资助金额:
$ 16.04万 - 项目类别:
Standard Grant
The Propaganda through the Artistic Performance Which Moving through East Asia during the Cold War
冷战时期穿越东亚的艺术表演宣传
- 批准号:
23H00003 - 财政年份:2023
- 资助金额:
$ 16.04万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
- 批准号:
23H01341 - 财政年份:2023
- 资助金额:
$ 16.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)