Applications of Symmetry & Invariants

对称性的应用

基本信息

  • 批准号:
    9500931
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-06-15 至 1998-08-31
  • 项目状态:
    已结题

项目摘要

DMS-9500931 Olver, Peter The research project will be devoted to the theory and applications of Lie groups and the Cartan equivalence method to a variety of problems arising in physics and engineering. Basic theoretical research goals include the classification of the Lie transformation groups in three-dimensional space, their differential invariants, and the associated Lie algebra cohomology. The applications of these results fall into three broad categories. In computer vision, a new paradigm of image processing based on differential geometric diffusion equations relies on classifying the differential invariant signatures of visual symmetry groups. In quantum mechanics, the analysis of quasi-exactly solvable Schrodinger operators continues to produce significant new developments in the study of Lie algebras of differential operators, including the remarkable phenomenon known as "quantization of cohomology"; in the present project, the concentration will shift to real planar quantum operators, as well as extensions to a fully three-dimensional theory. In continuum mechanics, the application of equivalence methods and exterior differential systems to the classification of variational problems will be further analyzed with a view to providing canonical forms, geometric invariants, and conservation laws for nonlinear variational problems arising in elasticity. The goals of this research project are to further our understanding of the mathematical theory of symmetry and invariants in three-dimensional space, motivated by several key physical applications, of importance in physics, engineering and medicine. In computer vision, new methods of image processing promise to have an immediate practical impact in medical imaging, such as the ultrasound detection of breast tumors. In elasticity, the classification of simple forms and symmetries of general materials should have significant consequences in the study of crack propagation and waves. In quantum mechanics, new types of problems some of whose fundamental states are classified by algebraic tools have known applications to molecular spectroscopy and scattering theory.
DMS-9500931 Olver,Peter该研究项目将致力于李群的理论和应用以及Cartan等价方法在物理和工程中出现的各种问题。基本的理论研究目标包括三维空间中李变换群的分类,它们的微分不变量,以及相关的李代数上同调。这些结果的应用分为三大类。在计算机视觉中,基于微分几何扩散方程的图像处理的新范例依赖于对视觉对称群的微分不变签名进行分类。在量子力学中,准精确可解薛定谔算子的分析继续在微分算子的李代数研究中产生重要的新发展,包括被称为“上同调量子化”的显着现象;在本项目中,重点将转移到真实的平面量子算子,以及扩展到全三维理论。在连续介质力学中,将进一步分析等价方法和外微分系统在变分问题分类中的应用,以期为弹性力学中出现的非线性变分问题提供规范形式、几何不变量和守恒定律。 该研究项目的目标是进一步了解三维空间中对称性和不变量的数学理论,其动机是几个关键的物理应用,在物理学,工程学和医学中具有重要意义。在计算机视觉中,新的图像处理方法有望对医学成像产生直接的实际影响,例如乳腺肿瘤的超声检测。在弹性力学中,一般材料的简单形式和对称性的分类在裂纹扩展和波的研究中具有重要意义。在量子力学中,一些基本状态被代数工具分类的新类型问题在分子光谱学和散射理论中有已知的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Olver其他文献

Peter Olver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Olver', 18)}}的其他基金

Geometric Analysis for Classification and Reassembly of Broken Bones
用于断骨分类和重组的几何分析
  • 批准号:
    1816917
  • 财政年份:
    2018
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Applications of Moving Frames
移动框架的应用
  • 批准号:
    1108894
  • 财政年份:
    2011
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
S4 Conference on Symmetry, Separation, Super-integrability and Special Functions
S4对称性、分​​离性、超可积性和特殊函数会议
  • 批准号:
    1013877
  • 财政年份:
    2010
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Applications of Moving Frames
移动框架的应用
  • 批准号:
    0807317
  • 财政年份:
    2008
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
School and Conference in Symmetries and Integrability of Difference Equations
差分方程的对称性和可积性学校和会议
  • 批准号:
    0737765
  • 财政年份:
    2007
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Applications of Lie Pseudogroups
李伪群的应用
  • 批准号:
    0505293
  • 财政年份:
    2005
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Workshop on Group Theory and Numerical Analysis
群论与数值分析研讨会
  • 批准号:
    0313441
  • 财政年份:
    2003
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Applications of Moving Frames
移动框架的应用
  • 批准号:
    0103944
  • 财政年份:
    2001
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Moving Frames & Computer Vision
移动框架
  • 批准号:
    9803154
  • 财政年份:
    1998
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematical Physics and Continuum Mechanics
数学科学:数学物理和连续介质力学
  • 批准号:
    9204192
  • 财政年份:
    1992
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于级联环形微腔PT-Symmetry效应的芯片级全光开关
  • 批准号:
    61675185
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
  • 批准号:
    MR/Y034007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Fellowship
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
  • 批准号:
    2350239
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Research Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
  • 批准号:
    23H01091
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了