Applications of Moving Frames
移动框架的应用
基本信息
- 批准号:1108894
- 负责人:
- 金额:$ 34.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OlverDMS-1108894 This project is centered on the further development of the theoretical tools and extension of the range of applications of the equivariant method of moving frames, that was first introduced in the late 1990's by the principal investigator in collaboration with a visiting postdoc, and since developed in many directions by a number of research groups worldwide. Of particular note are: First, new directions in image processing, object recognition and shape matching, involving combinations and comparisons of moving frame-based signatures and joint invariant histograms. Second, analysis and classification of invariant variational problems and invariant curve and surface flows using moving frame techniques applied to the invariant variational bicomplex, motivated by applications in geometric (bio-)mechanics, image denoising and smoothing, interface dynamics, and integrable soliton differential equations. Third, applications of the newly completed moving frame-based structure theory for infinite-dimensional Lie pseudo-groups that arise as symmetry groups of a wide variety of physical systems, including fluid mechanics, gauge theories, and solitons. Fourth, a detailed analysis of the ramifications of a new and surprising phenomenon of "dispersive quantization" that has been recently shown to arise in very basic linear models of dispersive wave equations on periodic domains, as well as, previously, in quantum mechanical systems and optics, where it is known as the Talbot effect. The project is based on the exploitation of symmetry in a wide range of mathematics and its applications, through new, powerful methods that were inspired by classical tools coming from pure geometry. Besides further development of the underlying mathematical theory and tools, the primary focus is on three interconnected areas of application: First, object recognition in digital images from various sources, under various notions of when two objects can be considered the same: e.g., under rigid motions; under change in camera viewing angle; under deformations of a prescribed type, etc. Second, analysis of dynamical equations incorporating intrinsic physical and mathematical symmetries that arise in a wide range of applications in biomechanics and materials, fluid mechanics, image processing, and interface motions. Third, understanding and exploring a new, surprising and potentially important phenomenon, in which, under the assumption of periodicity, solutions are "fractalized" at irrational times and "quantized/localized" at rational times, that was recently shown to arise in many basic linearly dispersive wave models governing a very broad range of wave motions, including quantum mechanical systems.
OlverDMS-1108894 该项目的重点是进一步发展的理论工具和扩大的应用范围的等变方法的移动框架,这是第一次介绍了在20世纪90年代后期的首席研究员与来访的博士后合作,并在许多方向发展的一些研究小组在世界各地。 特别值得注意的是:首先,图像处理、对象识别和形状匹配的新方向,涉及基于移动帧的签名和联合不变直方图的组合和比较。 第二,分析和分类不变变分问题和不变曲线和曲面流使用移动框架技术应用于不变变分双复体,在几何(生物)力学,图像去噪和平滑,界面动力学,可积孤子微分方程的应用程序的动机。 第三,应用新完成的移动框架为基础的结构理论的无限维李伪群出现的各种物理系统,包括流体力学,规范理论和孤子的对称群。 第四,详细分析了一种新的令人惊讶的“色散量子化”现象的后果,这种现象最近被证明出现在周期域上色散波动方程的非常基本的线性模型中,以及以前在量子力学系统和光学中,在那里它被称为塔尔博特效应。 该项目基于在广泛的数学及其应用中利用对称性,通过新的,强大的方法,这些方法受到来自纯几何的经典工具的启发。 除了基础数学理论和工具的进一步发展外,主要重点是三个相互关联的应用领域:首先,在两个对象可以被认为是相同的各种概念下,来自各种来源的数字图像中的对象识别:例如,在刚性运动下;根据相机视角的变化;根据规定类型的变形,等等。第二,分析动力学方程,将内在的物理和数学对称性,出现在生物力学和材料,流体力学,图像处理和界面运动的广泛应用。 第三,理解和探索一个新的,令人惊讶的和潜在的重要现象,其中,在周期性的假设下,解决方案是“分形”在无理时间和“量化/本地化”在合理的时间,这是最近出现在许多基本的线性色散波模型,包括量子力学系统,管理非常广泛的波动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Olver其他文献
Peter Olver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Olver', 18)}}的其他基金
Geometric Analysis for Classification and Reassembly of Broken Bones
用于断骨分类和重组的几何分析
- 批准号:
1816917 - 财政年份:2018
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
S4 Conference on Symmetry, Separation, Super-integrability and Special Functions
S4对称性、分离性、超可积性和特殊函数会议
- 批准号:
1013877 - 财政年份:2010
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
School and Conference in Symmetries and Integrability of Difference Equations
差分方程的对称性和可积性学校和会议
- 批准号:
0737765 - 财政年份:2007
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
Workshop on Group Theory and Numerical Analysis
群论与数值分析研讨会
- 批准号:
0313441 - 财政年份:2003
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Physics and Continuum Mechanics
数学科学:数学物理和连续介质力学
- 批准号:
9204192 - 财政年份:1992
- 资助金额:
$ 34.16万 - 项目类别:
Continuing Grant
相似国自然基金
柔嫩艾美耳球虫子孢子入侵关键结构 Moving Junction 的分子基础与功能研究
- 批准号:31201699
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 34.16万 - 项目类别:
Salary Programs
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
$ 34.16万 - 项目类别:
Collaborative R&D
Moving the dial on economic inactivity to build inclusive futures across Northern Ireland
扭转经济不活跃的局面,在整个北爱尔兰建立包容性的未来
- 批准号:
ES/Y502388/1 - 财政年份:2024
- 资助金额:
$ 34.16万 - 项目类别:
Research Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
- 批准号:
10092420 - 财政年份:2024
- 资助金额:
$ 34.16万 - 项目类别:
Collaborative R&D
Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
- 批准号:
24K08316 - 财政年份:2024
- 资助金额:
$ 34.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
- 批准号:
2350423 - 财政年份:2024
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
Scaling laws for aerodynamics of moving wings in the Martian atmosphere
火星大气中动翼空气动力学的标度定律
- 批准号:
DP240100294 - 财政年份:2024
- 资助金额:
$ 34.16万 - 项目类别:
Discovery Projects
ERI: Fault-Tolerant Monitoring of Moving Clusters of Targets using Collaborative Unmanned Aerial Vehicles
ERI:使用协作无人机对移动目标群进行容错监控
- 批准号:
2301707 - 财政年份:2023
- 资助金额:
$ 34.16万 - 项目类别:
Standard Grant
The Propaganda through the Artistic Performance Which Moving through East Asia during the Cold War
冷战时期穿越东亚的艺术表演宣传
- 批准号:
23H00003 - 财政年份:2023
- 资助金额:
$ 34.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
- 批准号:
23H01341 - 财政年份:2023
- 资助金额:
$ 34.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




