Differential Geometry and Partial Differential Equations

微分几何和偏微分方程

基本信息

  • 批准号:
    0104163
  • 负责人:
  • 金额:
    $ 83.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for DMS-0104163PI: Richard M. SchoenProfessor Schoen is proposing to study the existence of an extremal metricwhich defines the Bartnik quasilocal mass for a domain in a spacetime ofgeneral relativity. This would yield an existence theorem forasymptotically flat solutions of the static vacuum Einstein equations withsuitable boundary conditions. It is part of a variational approach forconstructing three dimensional geometries. Schoen's second projectinvolves the construction of special lagrangian, and more generallyminimal lagrangian, submanifolds in Calabi-Yau and Kaehler-Einsteinmanifolds. The approach is to construct hamiltonian stationarysubmanifolds by direct volume minimization among lagrangian submanifolds,and to obtain sufficient regularity to show that they are minimallagrangian. Schoen's third project is to further develop the harmonic mapapproach to prove the rigidity of smooth actions of lattices in semisimpleLie groups on compact manifolds. Professor Mutao Wang proposes to studythe mean curvature flow for special classes of submanifolds ofcodimension greater than one. The major thrust is to obtain stability andregularity properties of the flow. Dr. Baozhang Yang will study singularbehavior of Yang-Mills connections in arbitrary dimension. This study willinclude an investigation into the structure of blow-up sets and asymptoticbehavior near singularities. This research project concerns the study of geometric shapes whichoptimize certain physical and geometric energies. For curved spacetimes ingeneral relativity, there is no natural mass-energy density which can beassigned to the gravitational field, so Bartnik proposed to measure thegravitational mass of a region in a spacetime by minimizing the total massof all physical spacetimes which contain this region as a subset. Thisminimal mass spacetime, if it can be shown to exist, will be a staticsolution of Einstein's equations. One of the goals of this project is tofind a way to construct such static solutions, and to use them to studythree dimensional geometry. It is expected that three dimensional spaceshave natural geometries on them which are uniquely characterized by theircurvature properties. Another goal of this project is to construct certainspecial surfaces in Calabi-Yau manifolds, the spaces of stringtheory. These (three dimensional) surfaces, called special lagrangiansubmanifolds, are analogous to soap films in that they are surfaces of least possible area. Finally, it is proposed to study the evolutionproblem for surfaces which is called the mean curvature evolution. This isan evolution problem which moves a surface in space in such a way that itsarea is decreased most rapidly. Understanding the behavior of thisevolution is important for simplifying and smoothing complicated surfacesin an optimal way. Mathematically this is a difficult problem because thesurfaces may develop singularities such as cone points and tears whichmust be accounted for.
DMS-0104163 PI摘要:Richard M. Schoen教授提议研究一个极端度规的存在,它定义了广义相对论时空中一个域的Bartnik准局部质量。这将得到一个具有适当边界条件的静态真空爱因斯坦方程的渐近平坦解的存在性定理。它是构造三维几何的变分方法的一部分。Schoen的第二个项目涉及建设的特殊拉格朗日,更一般的最小拉格朗日,子流形在Calabi-Yau和Kaehler-Einsteinmanifold。其方法是在拉格朗日子流形中直接通过体积极小化来构造哈密顿定常子流形,并得到充分的正则性来证明它们是极小拉格朗日子流形。Schoen的第三个项目是进一步发展调和映射的方法来证明刚性的顺利行动格在semisimpleLie群紧凑的流形。王慕涛教授提出研究余维大于1的特殊子流形类的平均曲率流。主要的目的是获得流动的稳定性和规律性.杨宝章博士将研究任意维Yang-Mills连接的奇异行为。本研究将包括对爆破集的结构和奇点附近的渐近行为的研究。这个研究项目关注的是优化某些物理和几何能量的几何形状的研究。对于广义相对论中的弯曲时空,没有自然的质能密度可以分配给引力场,因此Bartnik提出通过最小化包含该区域作为子集的所有物理时空的总质量来测量时空中某个区域的引力质量。这个最小质量的时空,如果能够被证明存在的话,将是爱因斯坦方程的静态解。这个项目的目标之一是找到一种方法来构建这样的静态解决方案,并使用它们来研究三维几何。人们期望三维空间具有自然的几何形状,这些几何形状具有独特的曲率性质。这个项目的另一个目标是在卡-丘流形(弦论空间)中构造某些特殊曲面。这些(三维)表面,称为特殊拉格朗日子流形,类似于肥皂膜,因为它们是面积最小的表面。最后,提出研究曲面的演化问题,称之为平均曲率演化。这是一个进化问题,它在空间中移动一个表面,使它的面积最快地减小。理解这种演化的行为对于以最佳方式简化和平滑复杂曲面非常重要。在数学上这是一个困难的问题,因为这些表面可能会发展奇点,如锥点和撕裂,必须占.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Schoen其他文献

Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals
超曲面的正则性和奇异性估计最小化参数椭圆变分积分
  • DOI:
    10.1007/bf02392238
  • 发表时间:
    1977
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Richard Schoen;Leon Simon;F. Almgren
  • 通讯作者:
    F. Almgren
Barriers to the widespread utilization of residential solar energy: The prospects for solar energy in the U.S. housing industry
  • DOI:
    10.1007/bf00147230
  • 发表时间:
    1974-12-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Alan Hirshberg;Richard Schoen
  • 通讯作者:
    Richard Schoen
On the proof of the positive mass conjecture in general relativity
Preface to Peter Li Volume
  • DOI:
    10.1007/s12220-022-01088-7
  • 发表时间:
    2022-12-19
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Richard Schoen
  • 通讯作者:
    Richard Schoen
On the Gauss map of complete surfaces of constant mean curvature in R3 and R4
R3 和 R4 中恒定平均曲率完整曲面的高斯图
  • DOI:
    10.1007/bf02565874
  • 发表时间:
    1982
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    David Hoffman;R. Osserman;Richard Schoen
  • 通讯作者:
    Richard Schoen

Richard Schoen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Schoen', 18)}}的其他基金

Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    2005431
  • 财政年份:
    2020
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    1710565
  • 财政年份:
    2017
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    1540379
  • 财政年份:
    2014
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    1404966
  • 财政年份:
    2014
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    1105323
  • 财政年份:
    2011
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
SM: Proposal to Support The Pacific Rim Conference On Mathematics
SM:支持环太平洋数学会议的提案
  • 批准号:
    0963763
  • 财政年份:
    2010
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    0604960
  • 财政年份:
    2006
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
A Program on General Relativity
广义相对论计划
  • 批准号:
    0204721
  • 财政年份:
    2002
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Symplectic Geometry and Complex Geometry
辛几何和复几何
  • 批准号:
    9803192
  • 财政年份:
    1998
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    9803341
  • 财政年份:
    1998
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
  • 批准号:
    2141297
  • 财政年份:
    2021
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
  • 批准号:
    2005311
  • 财政年份:
    2020
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
  • 批准号:
    2005431
  • 财政年份:
    2020
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
  • 批准号:
    1955992
  • 财政年份:
    2020
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Standard Grant
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
  • 批准号:
    2271985
  • 财政年份:
    2019
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Studentship
Inverse Problems in Partial Differential Equations and Geometry
偏微分方程和几何中的反问题
  • 批准号:
    1900475
  • 财政年份:
    2019
  • 资助金额:
    $ 83.86万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了