Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
基本信息
- 批准号:0604960
- 负责人:
- 金额:$ 67.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Schoen is proposing research in the areas of Differential Geometry and General Relativity. He is proposing to study solutions of the constraint equations which are not time symmetric with an eye to the study of the general Penrose inequality as well as an analysis of the stability of the constraint manifold. The latter topic is important for understanding numerical stability for the vacuum Einstein equations. Professor Schoen is also proposing to study the construction of submanifolds which are calibrated by the special lagrangian calibrating form. He plans to apply ideas from geometric measure theory to this problem. He also plans to study hamiltonian stationary submanifolds in dimension greater than two; in particular, the hamiltonian stationary tangent cones will be studied. Professor Schoen intends to investigate stable minimal surfaces which remain stable under coverings with the hope of showing that these are holomorphic in general situations. Finally, he intends to study geodesic completeness properties of hypersurfaces in Minkowski space of constant Gauss-Kronecker curvature. Professor Schoen's project will lead to a better understanding of solutions of the Einstein equations of General Relativity. A better theoretical understanding is essential for the success of accurate numerical modeling of solutions. Numerical modeling is important for predicting the nature of the gravitational radiation which arises from dynamic situations, and NSF currently has a large project, LIGO, which is attempting to measure this radiation. He believes that the theoretical work of this project will be helpful for the numerics. The remainder of Professor Schoen's proposed work involves the use of geometric methods to understand the behavior of surface interfaces, such as soap films and soap bubbles, of varying dimension which arise in physical situations. These natural geometric objects can be used to describe subtle properties of the spaces in which they reside. These spaces arise in physical models such as string theory where they play a basic role.
Schoen教授建议在微分几何和广义相对论领域进行研究。他建议研究解决方案的约束方程是不是时间对称的眼睛的研究一般彭罗斯不等式以及分析的稳定性的约束流形。后者的主题是重要的理解数值稳定性的真空爱因斯坦方程。Schoen教授还建议研究由特殊的拉格朗日校准形式校准的子流形的构造。他计划将几何测量理论的思想应用于这个问题。他还计划研究维度大于二的汉密尔顿平稳子流形;特别是,将研究汉密尔顿平稳切锥。Schoen教授打算研究在覆盖下保持稳定的稳定极小曲面,希望表明这些曲面在一般情况下是全纯的。最后,他打算研究常高斯-克罗内克曲率的闵可夫斯基空间中超曲面的测地完备性。舍恩教授的项目将使人们更好地理解爱因斯坦广义相对论方程的解。更好的理论理解是成功的精确数值模拟的解决方案。数值模拟对于预测动态情况下产生的引力辐射的性质非常重要,NSF目前有一个大型项目LIGO,试图测量这种辐射。他认为,这个项目的理论工作将有助于数字。Schoen教授提出的工作的其余部分涉及使用几何方法来理解表面界面的行为,如肥皂膜和肥皂泡,在物理情况下出现的不同尺寸。这些自然的几何物体可以用来描述它们所处的空间的微妙特性。这些空间出现在物理模型中,例如弦理论,在那里它们扮演着基本的角色。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Schoen其他文献
Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals
超曲面的正则性和奇异性估计最小化参数椭圆变分积分
- DOI:
10.1007/bf02392238 - 发表时间:
1977 - 期刊:
- 影响因子:3.7
- 作者:
Richard Schoen;Leon Simon;F. Almgren - 通讯作者:
F. Almgren
Barriers to the widespread utilization of residential solar energy: The prospects for solar energy in the U.S. housing industry
- DOI:
10.1007/bf00147230 - 发表时间:
1974-12-01 - 期刊:
- 影响因子:3.700
- 作者:
Alan Hirshberg;Richard Schoen - 通讯作者:
Richard Schoen
On the proof of the positive mass conjecture in general relativity
- DOI:
10.1007/bf01940959 - 发表时间:
1979-02-01 - 期刊:
- 影响因子:2.600
- 作者:
Richard Schoen;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Preface to Peter Li Volume
- DOI:
10.1007/s12220-022-01088-7 - 发表时间:
2022-12-19 - 期刊:
- 影响因子:1.500
- 作者:
Richard Schoen - 通讯作者:
Richard Schoen
On the Gauss map of complete surfaces of constant mean curvature in R3 and R4
R3 和 R4 中恒定平均曲率完整曲面的高斯图
- DOI:
10.1007/bf02565874 - 发表时间:
1982 - 期刊:
- 影响因子:0.9
- 作者:
David Hoffman;R. Osserman;Richard Schoen - 通讯作者:
Richard Schoen
Richard Schoen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Schoen', 18)}}的其他基金
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
1710565 - 财政年份:2017
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
1540379 - 财政年份:2014
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
1404966 - 财政年份:2014
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
1105323 - 财政年份:2011
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
SM: Proposal to Support The Pacific Rim Conference On Mathematics
SM:支持环太平洋数学会议的提案
- 批准号:
0963763 - 财政年份:2010
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
0104163 - 财政年份:2001
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Symplectic Geometry and Complex Geometry
辛几何和复几何
- 批准号:
9803192 - 财政年份:1998
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
9803341 - 财政年份:1998
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
2141297 - 财政年份:2021
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
- 批准号:
2005311 - 财政年份:2020
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
1955992 - 财政年份:2020
- 资助金额:
$ 67.66万 - 项目类别:
Standard Grant
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
- 批准号:
2271985 - 财政年份:2019
- 资助金额:
$ 67.66万 - 项目类别:
Studentship
Inverse Problems in Partial Differential Equations and Geometry
偏微分方程和几何中的反问题
- 批准号:
1900475 - 财政年份:2019
- 资助金额:
$ 67.66万 - 项目类别:
Continuing Grant