Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
基本信息
- 批准号:1105323
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project lies at the interface between Differential Geometry, General Relativity, and Partial Differential Equations. One theme will be the study of manifolds of positive curvature. Specifically the proposer plans to further his study of manifolds of positive isotropic curvature (PIC) using Ricci flow and minimal surface techniques. He also hopes to prove sphere theorems under pointwise pinching conditions with pinching slightly below 1/4. In relativity he plans to study the geometry of static matter solutions hoping to show that matter bodies cannot be separated by convex sets in such solutions. He also plans to study the general Penrose inequality; that is, the conjectured inequality for black hole initial sets with nonzero second fundamental form. He will also pursue a range of questions concerning minimal submanifolds satisfying free boundary conditions and connections to eigenvalue problems. Finally he plans to continue his study of minimal lagrangian and special lagrangian submanifolds of Kahler-Einstein manifolds. He will attempt to prove a conjecture concerning the invariance of the subgroup of the integral homology of a Calabi-Yau manifold which is generated by minimal lagrangian cycles when one deforms the ambient Calabi-Yau structure.Understanding spaces in terms of their curvature properties is a fundamental idea in mathematics and science. The laws of nature often provide information about curvature properties, and from those we must deduce information about the spaces. A prime example of this is General Relativity where the equations of motion are described by curvature, and from those we must determine concrete properties of the universe. This project deals with a range of questions of this type such as the way in which black holes form from smooth initial data. Furthermore, geometry is important in application areas such as imaging and computer graphics. The research of this project will advance the core geometric ideas which form the basis of such applications.
这个项目位于微分几何,广义相对论和偏微分方程之间的接口。其中一个主题将是研究流形的积极曲率。具体来说,提议者计划进一步研究流形的正各向同性曲率(PIC)使用里奇流和极小曲面技术。他还希望证明领域定理下逐点捏捏条件捏略低于1/4。 在相对论,他计划研究几何静态物质的解决方案,希望表明,物质机构不能分开的凸集在这样的解决方案。他还计划研究一般的彭罗斯不等式,即黑洞初始集具有非零第二基本形式的约束不等式。他还将追求一系列的问题,关于满足自由边界条件和连接到特征值问题的极小子流形。最后,他计划继续他的研究最小拉格朗日和特殊拉格朗日子流形的卡勒-爱因斯坦流形。他将试图证明一个猜想关于不变性的子群的积分同源性的卡-丘流形这是由最小拉格朗日周期时,一个变形的环境卡-丘结构。了解空间的曲率性质是一个基本的想法在数学和科学。自然定律经常提供关于曲率性质的信息,我们必须从这些信息中推导出关于空间的信息。这方面的一个主要例子是广义相对论,其中的运动方程是由曲率描述的,我们必须从这些方程中确定宇宙的具体性质。该项目涉及一系列这类问题,例如黑洞如何从平滑的初始数据中形成。 此外,几何在诸如成像和计算机图形的应用领域中是重要的。该项目的研究将推进形成此类应用基础的核心几何思想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Schoen其他文献
Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals
超曲面的正则性和奇异性估计最小化参数椭圆变分积分
- DOI:
10.1007/bf02392238 - 发表时间:
1977 - 期刊:
- 影响因子:3.7
- 作者:
Richard Schoen;Leon Simon;F. Almgren - 通讯作者:
F. Almgren
Barriers to the widespread utilization of residential solar energy: The prospects for solar energy in the U.S. housing industry
- DOI:
10.1007/bf00147230 - 发表时间:
1974-12-01 - 期刊:
- 影响因子:3.700
- 作者:
Alan Hirshberg;Richard Schoen - 通讯作者:
Richard Schoen
On the proof of the positive mass conjecture in general relativity
- DOI:
10.1007/bf01940959 - 发表时间:
1979-02-01 - 期刊:
- 影响因子:2.600
- 作者:
Richard Schoen;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Preface to Peter Li Volume
- DOI:
10.1007/s12220-022-01088-7 - 发表时间:
2022-12-19 - 期刊:
- 影响因子:1.500
- 作者:
Richard Schoen - 通讯作者:
Richard Schoen
On the Gauss map of complete surfaces of constant mean curvature in R3 and R4
R3 和 R4 中恒定平均曲率完整曲面的高斯图
- DOI:
10.1007/bf02565874 - 发表时间:
1982 - 期刊:
- 影响因子:0.9
- 作者:
David Hoffman;R. Osserman;Richard Schoen - 通讯作者:
Richard Schoen
Richard Schoen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Schoen', 18)}}的其他基金
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
1710565 - 财政年份:2017
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
1540379 - 财政年份:2014
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
1404966 - 财政年份:2014
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
SM: Proposal to Support The Pacific Rim Conference On Mathematics
SM:支持环太平洋数学会议的提案
- 批准号:
0963763 - 财政年份:2010
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
0604960 - 财政年份:2006
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
0104163 - 财政年份:2001
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Symplectic Geometry and Complex Geometry
辛几何和复几何
- 批准号:
9803192 - 财政年份:1998
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
9803341 - 财政年份:1998
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
2141297 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
- 批准号:
2005311 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
1955992 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Inverse Problems in Partial Differential Equations and Geometry
偏微分方程和几何中的反问题
- 批准号:
1900475 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
- 批准号:
2271985 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Studentship