Physical Knots
物理结
基本信息
- 批准号:0107209
- 负责人:
- 金额:$ 17.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-10-01 至 2006-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator and his colleagues study "Physical Knots," bridging the gap between purely topological properties of knots and links, and physically realistic systems in which properties such as thickness, curvature, repelling forces, and randomness are evident. Focus areas include: understanding how random tangling increases with filament length in different kinds of systems; determining existence, uniqueness, and geometric properties of optimal conformations of knots; modeling gel electrophoresis of knotted DNA loops; understanding how the "symmetric energy" of knots models physical behavior such as accessibility of molecules to enzymes and self-irradiation of filaments that emit; determining relationships between various knot energies; understanding how knots, such as folding proteins, form in filaments with free ends.This project contributes to the understanding of one of the fundamental ways that matter behaves: a solid object occupies space; a sheet of material separates one part of space from another; and a string tangles with itself or other strings. There is growing scientific awareness that knotting and tangling happen, and are physically important, at every scale of size, from molecules such as DNA and other polymers, to magnetic field lines in the sun. But there are many basic questions that are not yet answered: How are knots and tangles created, or destroyed, in various settings? What happens when one pulls a knot tight? Why do mathematically different kinds of knots behave the way they do in physical situations? How can we model knots on the computer, and how well do the computer simulations reflect actual behavior? The combination of importance of the phenomenon, together with substantial open questions, makes this area fascinating and valuable for research. In particular, the project seeks to contribute to areas of national interest, including increasing understanding of the behavior of DNA molecules, and helping to elucidate the process of protein folding.
研究人员和他的同事们研究“物理结”,弥合纯拓扑性质的结和链接之间的差距,物理现实的系统,其中的属性,如厚度,曲率,排斥力,和随机性是显而易见的。 重点领域包括:理解随机缠结如何在不同类型的系统中随细丝长度增加;确定结的最佳构象的存在性,唯一性和几何性质;模拟打结DNA环的凝胶电泳;理解结的“对称能量”如何模拟物理行为,例如分子对酶的可及性和发射的细丝的自辐射;确定各种结能量之间的关系;了解如何结,如折叠蛋白质,形成在细丝与自由端。这个项目有助于了解的基本方式之一,物质的行为:一个固体物体占据空间;一张材料分隔空间的一部分,从另一个;和字符串缠结本身或其他字符串。 越来越多的科学家意识到,打结和缠结的发生,是物理上重要的,在每一个规模的大小,从分子,如DNA和其他聚合物,以磁场线在太阳上。 但还有许多基本问题尚未得到解答:在不同的环境中,结和缠结是如何产生或消灭的? 当一个人拉紧一个结会发生什么? 为什么数学上不同种类的结在物理情况下会表现出不同的行为? 我们如何在计算机上模拟结,以及计算机模拟如何反映实际行为? 这一现象的重要性与大量的开放性问题相结合,使这一领域具有吸引力和研究价值。 特别是,该项目旨在为国家利益领域做出贡献,包括增加对DNA分子行为的理解,并帮助阐明蛋白质折叠的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Simon其他文献
Time Reversal Invariant Topologically Insulating Circuit
时间反转不变拓扑绝缘电路
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ningyuan Jia;A. Sommer;D. Schuster;Jonathan Simon - 通讯作者:
Jonathan Simon
Quantum-limited millimeter wave to optical transduction
量子限制毫米波到光转换
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Aishwarya Kumar;A. Suleymanzade;M. Stone;Lavanya Taneja;Alexander Anferov;D. Schuster;Jonathan Simon - 通讯作者:
Jonathan Simon
Autonomous stabilization of photonic Laughlin states through angular momentum potentials
通过角动量势自主稳定光子劳克林态
- DOI:
10.1103/physreva.104.023704 - 发表时间:
2021 - 期刊:
- 影响因子:2.9
- 作者:
R. O. Umucalilar;Jonathan Simon;I. Carusotto - 通讯作者:
I. Carusotto
High-resolution intra-urban assessments of future heat events and heat waves for the city of Augsburg, Germany
德国奥格斯堡市未来高温事件和热浪的高分辨率城市内评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.4
- 作者:
Christian Merkenschlager;E. Hertig;Jonathan Simon;C. Beck - 通讯作者:
C. Beck
An Autonomous Stabilizer for Incompressible Photon Fluids and Solids
不可压缩光子流体和固体的自主稳定器
- DOI:
10.1103/physreva.95.043811 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
R. Ma;Clai Owens;A. Houck;D. Schuster;Jonathan Simon - 通讯作者:
Jonathan Simon
Jonathan Simon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Simon', 18)}}的其他基金
EAGER: Quantum Random Walks in the Bose Hubbard Circuit
EAGER:Bose Hubbard 电路中的量子随机游走
- 批准号:
1926604 - 财政年份:2019
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
NCS-FO: Extracting Functional Cortical Network Dynamics at High Spatiotemporal Resolution
NCS-FO:以高时空分辨率提取功能性皮层网络动力学
- 批准号:
1734892 - 财政年份:2017
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
相似海外基金
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
$ 17.7万 - 项目类别:
Discovery Projects
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
- 批准号:
2240741 - 财政年份:2023
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Studies in knots and 3-manifolds
结和 3 流形的研究
- 批准号:
RGPIN-2020-05491 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Discovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Knots, Disks, and Exotic Phenomena in Dimension 4
第 4 维中的结、圆盘和奇异现象
- 批准号:
2204349 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
MPS-Ascend: Bi-Orderability, Fibered Knots, and Cyclic Branched Covers
MPS-Ascend:双向可排序性、纤维结和循环分支覆盖层
- 批准号:
2213213 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Fellowship Award
A study of homological invariants of knots and 3-manifolds
结和3-流形的同调不变量的研究
- 批准号:
22K03318 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of cosmetic surgeries on knots in rational homology spheres
有理同调域中结的整容手术分类
- 批准号:
22K03301 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new look into various arithmetic and topological invariants through the eyes of modular knots
从模结的角度重新审视各种算术和拓扑不变量
- 批准号:
21K18141 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
- 批准号:
2110030 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant














{{item.name}}会员




