Entry, Learning, and Industry Evolution
进入、学习和行业演变
基本信息
- 批准号:0111429
- 负责人:
- 金额:$ 19.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three projects concerning the conditions that lead firms to enter new industries and that cause industries to be concentrated in narrow geographic regions are conducted. The first project analyzes the circumstances that lead employees of existing firms to leave and start competing firms in the same industry. Employees of incumbent firms are assumed to learn useful technical and marketing knowledge in the specialized domains in which they work for their employers, which they exploit in starting their own firms. Better performing firms are assumed to be richer learning environments, leading them to spawn more and better-performing employee startups. Employee startups thus serve to diffuse knowledge to new organizations, thereby increasing the strength of the competitors in an industry. These ideas are tested using data that builds on data collected in a prior NSF project on all entrants into the automobile and laser industries. For each industry, various predictions concerning the types of firms that spawn more employee startups, the market conditions that are conducive to such startups, and the relationship between employee startups and the prior experiences of their founders are tested.The second project analyzes the potential of a rare chance event, namely the location of a few very successful early entrants in the same region, to profoundly affect the evolution of the geographic structure of an industry. This can occur through the employee startup process envisioned in the first project. If employee startups drive regional concentrations, it implies that regional public policy efforts to promote industry concentrations should focus on facilitating employee startups. The importance of employee startups in regional industry concentrations is tested using the data compiled in the first project on the automobile industry, which became heavily concentrated around Detroit, Michigan. The location and heritage of every automobile producer is traced to test the extent to which the success of the Detroit producers was concentrated in firms that either directly or though other employee startups can be traced back to four of the most successful early automobile entrants, Olds Motor Works, Cadillac, Buick, and Ford, all of which located in the Detroit area. The last project explores how learning from experience leads firms to expand the repertoire of activities they conduct within industries. It is conjectured that as firms learn about the core technologies of an industry, they expand their efforts into new activities that are more challenging to master. This perspective can account for patterns in the way firms grow and also why the leaders of industries tend to produce the broadest array of the industry's products. It also implies that older and more qualified firms are the first to diversify into new industry domains created by innovations, which contrasts with recent theories about how innovations can lead to turnover in the leaders of an industry. The theory is tested using the data for the automobile and laser industries and also using data for part of the history of the tire industry developed in the same prior NSF project. The empirical examination probes the kinds of innovations that pose the greatest challenges to an industry's leading firms versus those that reinforce the positions of the industry's leaders.
进行了三个项目,涉及导致企业进入新产业和导致产业集中在狭窄地理区域的条件。 第一个项目分析了导致现有公司的员工离开并开始在同一行业中竞争公司的情况。 现有公司的雇员被认为在他们为雇主工作的专门领域学习有用的技术和营销知识,他们利用这些知识创办自己的公司。 表现更好的公司被认为是更丰富的学习环境,导致他们产生更多和表现更好的员工创业公司。 因此,员工创业公司可以将知识传播给新的组织,从而增加行业竞争对手的实力。 这些想法使用建立在先前NSF项目中收集的数据上的数据进行测试,这些数据针对汽车和激光行业的所有进入者。 对于每个行业,我们都将测试各种预测,这些预测涉及到产生更多员工创业的公司类型、有利于此类创业的市场条件以及员工创业与其创始人先前经历之间的关系。第二个项目分析了一个罕见的机会事件的潜力,即在同一地区有几个非常成功的早期进入者,深刻影响一个行业的地理结构的演变。 这可以通过第一个项目中设想的员工启动过程来实现。 如果员工创业推动区域集中,这意味着促进行业集中的区域公共政策努力应该集中在促进员工创业上。 员工创业在区域产业集中度中的重要性是使用第一个汽车行业项目中汇编的数据进行测试的,该项目主要集中在密歇根州底特律市。 我们对每一家汽车制造商的位置和历史进行了追溯,以检验底特律汽车制造商的成功在多大程度上集中于那些直接或通过其他员工创业的公司,这些公司可以追溯到四家最成功的早期汽车进入者,即奥尔兹汽车厂、凯迪拉克、别克和福特,它们都位于底特律地区。 最后一个项目探讨了如何从经验中学习导致公司扩大他们在行业内进行的活动的剧目。 据了解,随着企业了解一个行业的核心技术,它们将努力扩展到更难掌握的新活动中。 这一观点可以解释公司成长的模式,也可以解释为什么行业领导者倾向于生产最广泛的行业产品。 这也意味着,更老和更合格的公司是第一个多样化到新的行业领域所创造的创新,这与最近的理论创新如何导致一个行业的领导者的流动。 使用汽车和激光工业的数据以及在同一先前NSF项目中开发的轮胎工业的部分历史数据来测试该理论。 实证研究探讨了对行业领先企业构成最大挑战的创新类型,以及加强行业领导者地位的创新类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Klepper其他文献
The role of tax preparers in tax compliance
- DOI:
10.1007/bf00141383 - 发表时间:
1989-05-01 - 期刊:
- 影响因子:3.700
- 作者:
Steven Klepper;Daniel Nagin - 通讯作者:
Daniel Nagin
Symposium on Harrison's “Lean and Mean”: A technological perspective
- DOI:
10.1007/bf01302732 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:4.800
- 作者:
Steven Klepper - 通讯作者:
Steven Klepper
Does the Profit Motive Make Jack Nimble? Ownership Form and the Evolution of the U.S. Hospital Industry
利润动机会让杰克·尼布尔变得更聪明吗?
- DOI:
10.2139/ssrn.821464 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Sujoy Chakravarty;M. Gaynor;Steven Klepper;William B. Vogt - 通讯作者:
William B. Vogt
Does the profit motive make Jack nimble? Ownership form and the evolution of the US hospital industry.
利润动机是否使杰克变得灵活?
- DOI:
10.1002/hec.1111 - 发表时间:
2006 - 期刊:
- 影响因子:2.1
- 作者:
Sujoy Chakravarty;M. Gaynor;Steven Klepper;William B. Vogt - 通讯作者:
William B. Vogt
Entrepreneurship, the initial labor force, and the location of new firms
- DOI:
10.1007/s11187-022-00618-5 - 发表时间:
2022-04-13 - 期刊:
- 影响因子:4.800
- 作者:
Cristina Carias;Steven Klepper;Rui Baptista - 通讯作者:
Rui Baptista
Steven Klepper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Klepper', 18)}}的其他基金
Clusters, Heritage and the Microfoundations of Spillovers - Lessons from Semi-Conductors
集群、遗产和溢出效应的微观基础——半导体的教训
- 批准号:
0965451 - 财政年份:2010
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
Shakeouts, Concentration and Firm Survival
洗牌、集中和企业生存
- 批准号:
9600041 - 财政年份:1996
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
- 批准号:
24K20781 - 财政年份:2024
- 资助金额:
$ 19.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Bayesian Reinforcement Learning in the Games Industry
游戏行业中的可扩展贝叶斯强化学习
- 批准号:
2890029 - 财政年份:2023
- 资助金额:
$ 19.14万 - 项目类别:
Studentship
OSCAR CV: Accelerating the adoption of Machine Learning & Computer Vision in the Sports turf industry
OSCAR CV:加速机器学习的采用
- 批准号:
10065829 - 财政年份:2023
- 资助金额:
$ 19.14万 - 项目类别:
Collaborative R&D
Collaborative Research: ANSWERS: The Satellite Surface Charging Observatory for Prediction, Understanding, Learning, and Industry
合作研究:答案:用于预测、理解、学习和工业的卫星表面充电观测站
- 批准号:
2149783 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
Machine learning powered tooling for analysing climate alignment in the financial industry
用于分析金融行业气候一致性的机器学习驱动工具
- 批准号:
10031857 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Small Business Research Initiative
Developing Novel Deep Multitask Learning Algorithms for Various Industry Applications
为各种行业应用开发新颖的深度多任务学习算法
- 批准号:
575989-2022 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
- 批准号:
529584-2018 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Collaborative Research and Development Grants
FW-HTF-P: LEAP: Learning, Accelerating, And Empowering Embodied Robot Technology Use Within The Construction Industry
FW-HTF-P:LEAP:学习、加速和增强建筑行业内机器人技术的使用
- 批准号:
2222870 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: The Satellite Surface Charging Observatory for Prediction, Understanding, Learning, and Industry
合作研究:答案:用于预测、理解、学习和工业的卫星表面充电观测站
- 批准号:
2149782 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
Targeted Infusion Project: Infuse Virtual Reality and Industry 4.0 into Design and Manufacturing Laboratory for Student-centered Learning Experience
针对性注入项目:将虚拟现实和工业4.0注入设计和制造实验室,提供以学生为中心的学习体验
- 批准号:
2107140 - 财政年份:2021
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant














{{item.name}}会员




