Wavelets, Generalized Spectrum, and Nonparametric Analysis and Applications in Time Series Econometrics

小波、广义谱、非参数分析及其在时间序列计量经济学中的应用

基本信息

  • 批准号:
    0111769
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-15 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

This project consists of three areas of research in econometrics: wavelet analysis in time series/dynamic panels; evaluation of out-of-sample forecasts for densities and confidence inter-vals; and asymptotic distribution theory for nonparametric entropy measures of serial dependence. Wavelet analysis provides natural tools for estimating the spectrum of an economic time series, which typically has peaks/spikes, due to strong autocorrelation, seasonality and business cycles. One example is heteroskedasticity and autocorrelation con-sistent (HAC) covariance estimation. The popular Andrews-Newey kernel methods tend to underestimate the peak (and so the HAC), leading to overrejection in testing, and too narrow confidence interval estimates. This project develops a class of wavelet-based HAC estimators. Some simulation studies show that for the size of tests, the wavelet estimators outperform their kernel counterparts, particularly when serial correlation is strong. Two substantive extensions are pursued. The first is to refine the wavelet HAC estimators via a nonparametric frequency-domain prewhitening pro-cedure. This provides a faster convergent and more stable alternative than the commonly used parametric vector autoregression (VAR) prewhitening. The second extension is wavelet HAC estimation for panel models. The cur-rent practice for kernel HAC estimation in panels uses a bandwidth depending only on the number of time periods. This project finds that for both kernels and wavelets, the optimal smoothing parameters in panels depend on both the numbers of time periods and individuals. Wavelets are also used to distinguish a trend-stationary time series from a unit root process and to test serial correlation of unknown form in panel models.Omnibus procedures for evaluating out-of-sample density and intervals forecasts are developed using a generalized spectral ap-proach. These procedures are supplemented with a class of separate inference procedures that can reveal information on sources of suboptimal density- and intervals forecasts. Appli-cations to stock markets and foreign exchange markets evaluate a variety of popular density forecast models.For a class of kernel-based smoothed nonparametric entropy measures of serial dependence, this project develops an asymptotic distribution theory and shows how it can be used to derive the limit distributions for the existing entropy measures in the literature. The project develops tests that are either not available in the literature or are asymptotically more powerful than the existing procedures. Entropy measures can be used to test the random walk hypothesis, evaluate density- forecast models, identify significant lags of a time series and check the adequacy of dynamic likelihood models.
该项目包括计量经济学的三个研究领域:时间序列/动态面板中的小波分析;密度和置信度区间的样本外预测的评估;以及序列相关性非参数熵度量的渐近分布理论。小波分析为估计经济时间序列的频谱提供了自然的工具,由于强烈的自相关性、季节性和商业周期,经济时间序列通常具有峰值/尖峰。异方差和自相关相容(HAC)协方差估计就是一个例子。流行的Andrews-Newey核方法倾向于低估峰值(以及HAC),导致测试中的过度拒绝,以及太窄的可信区间估计。该项目开发了一类基于小波的HAC估计器。一些模拟研究表明,对于测试的规模,小波估计器的性能优于核估计器,特别是在序列相关性较强的情况下。正在寻求两次实质性的延期。第一种是通过非参数频域预白化过程来改进小波HAC估值器。这提供了比常用的参数向量自回归(VAR)预白化更快的收敛和更稳定的替代方案。第二个扩展是面板模型的小波HAC估计。面板中内核HAC估计的当前做法使用的带宽仅取决于时间段的数量。这个项目发现,对于核函数和小波,面板中的最优平滑参数既取决于时间段的数量,也取决于个体的数量。小波还被用来区分趋势平稳时间序列和单位根过程,并在面板模型中检验未知形式的序列相关性。利用广义谱方法开发了估计样本外密度和区间预测的综合程序。这些程序辅以一类独立的推理程序,可以揭示次优密度和区间预测的来源信息。将密度预测模型应用于股票市场和外汇市场,对一类具有序列相关性的基于核的光滑非参数熵度量,发展了一种渐近分布理论,并证明了它可以用来推导文献中已有的熵度量的极限分布。该项目开发的测试要么在文献中不可用,要么逐渐比现有程序更强大。熵度量可用于检验随机游走假设、评估密度预测模型、识别时间序列的显著滞后以及检查动态似然模型的充分性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongmiao Hong其他文献

A Vector Autoregressive Moving Average Model for Interval-Valued Time Series Data
区间值时间序列数据的向量自回归移动平均模型
  • DOI:
    10.1108/s0731-905320160000036021
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ai Han;Yongmiao Hong;Shouyang Wang;Xin Yun
  • 通讯作者:
    Xin Yun
Testing for independence between two covariance stationary time series
  • DOI:
    10.1093/biomet/83.3.615
  • 发表时间:
    1996-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yongmiao Hong
  • 通讯作者:
    Yongmiao Hong
Fast estimation of a large TVP-VAR model with score-driven volatilities
快速估计具有分数驱动波动性的大型 TVP-VAR 模型
ERRATUM: Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models
勘误表:通过广义谱和非线性时间序列模型推断外汇汇率的可预测性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongmiao Hong;Tae
  • 通讯作者:
    Tae
Forecasting the Joint Probability Density of Bond Yields: Can Affine Models Beat Random Walk?
预测债券收益率的联合概率密度:仿射模型能否击败随机游走?

Yongmiao Hong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

三维流形的Generalized Seifert Fiber分解
  • 批准号:
    11526046
  • 批准年份:
    2015
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Generalized deep unfoldingの提案と曖昧なドメイン知識モデリングへの応用
广义深度展开的提出及其在模糊领域知识建模中的应用
  • 批准号:
    24K03010
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
  • 批准号:
    2350351
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Near Lossless Dense Light Field Compression Using Generalized Neural Radiance Field
使用广义神经辐射场的近无损密集光场压缩
  • 批准号:
    24K20797
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
  • 批准号:
    2324632
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
  • 批准号:
    10715334
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Testing generalized space-time geometry with multimessenger observations of gravitation al waves
用引力波的多信使观测测试广义时空几何
  • 批准号:
    22KF0085
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了