ITR: Entropy Based Multi-Objective Genetic Algorithm With Constraint Handling and Set Quality Metrics

ITR:具有约束处理和集合质量指标的基于熵的多目标遗传算法

基本信息

  • 批准号:
    0112767
  • 负责人:
  • 金额:
    $ 37.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

This Information Technology Research project aims at developing an entropy based multi-objective genetic algorithm for design optimization. The algorithm is based on an analogy from statistical theory of gases in order to obtain a fullest possible representation of solutions. In the proposed algorithm, statistical behaviors of a sample of designs in a population will be simulated, as they evolve, according to those of the molecules of an ideal gas undergoing expansion in an enclosure. The goal of this analogy is to obtain solutions with maximum entropy, that is, maximum possible uniformity and coverage along the Pareto frontier. The investigation will involve the development of new methods for handling constraints in multi-objective design optimization as well as new quality metrics for assessing the "goodness" of a set of equally optimum (Pareto) solutions. The quality metrics will also be used to develop new convergence criteria for the algorithm. If successful, the outcome of the research will advance the state of the art at the level of computational tools that enable multi-objective engineering design optimization with applications to a wide class of problems. The results of this investigation will be broadly disseminated for the engineering design automation community, transferred and integrated into several courses at the graduate and undergraduate levels at the University of Maryland, and transferred to industry.
本资讯科技研究计划旨在发展一种以熵为基础的多目标遗传演算法,以进行设计最佳化。该算法是基于气体统计理论的类比,以获得尽可能完整的解决方案。在所提出的算法中,人口中的设计样本的统计行为将被模拟,因为它们的演变,根据那些在封闭空间中经历膨胀的理想气体的分子。 这种类比的目的是获得具有最大熵的解,即沿着帕累托边界沿着最大可能的均匀性和覆盖率。调查将涉及开发新的方法来处理多目标设计优化中的约束条件,以及新的质量指标来评估一组同样最优(帕累托)解决方案的“善良”。 质量指标也将用于开发新的收敛标准的算法。如果成功的话,研究的结果将在计算工具的水平上推进最先进的技术,使多目标工程设计优化与应用到广泛的一类问题。这项调查的结果将广泛传播的工程设计自动化社区,转移和整合到几个课程在研究生和本科生水平在马里兰州大学,并转移到行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shapour Azarm其他文献

Shapour Azarm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shapour Azarm', 18)}}的其他基金

EAGER: Design for Bundling Decisions with Marketing and Public Policy Considerations
EAGER:将决策与营销和公共政策考虑因素捆绑在一起的设计
  • 批准号:
    1137593
  • 财政年份:
    2011
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Strategic Product Design for Retail Channel Acceptance Under Uncertainty and Competition
不确定性和竞争下零售渠道接受度的战略产品设计
  • 批准号:
    0654042
  • 财政年份:
    2007
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
GOALI: Robust Product Design Selection under Uncertainty and for Competitive Advantage
目标:在不确定性和竞争优势下进行稳健的产品设计选择
  • 批准号:
    0200029
  • 财政年份:
    2002
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Continuing Grant
GOALI/IUCP: Concurrent Optimization-Based Design of Multi-Component Systems with Multiple Views
GOALI/IUCP:多视图多组件系统的并行优化设计
  • 批准号:
    9700059
  • 财政年份:
    1997
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Continuing Grant
Research Initiation: An Extension of Local Monotonicity to Optimal Design of Large Systems of Mechanical Components
研究启动:局部单调性扩展到大型机械部件系统的优化设计
  • 批准号:
    8505113
  • 财政年份:
    1985
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant

相似海外基金

Optimum design of reactive transport fields in fuel cells based on combined measurements using laser and X-ray and entropy mapping
基于激光、X 射线和熵映射组合测量的燃料电池中反应输运场的优化设计
  • 批准号:
    23K03692
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prognostic Value of CMR-Based Myocardial Entropy in Heart Failure Patients with non-reduced Ejection Fraction (HF non-rEF)
基于 CMR 的心肌熵对射血分数非降低的心力衰竭 (HF non-rEF) 患者的预后价值
  • 批准号:
    23K15106
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of physical property correlation based on entropy and creation of new thermal control materials
基于熵的物性关系式构建与新型热控材料的创制
  • 批准号:
    23H05457
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Development of next-generation high-temperature structural materials based on BCC medium-entropy alloys in the Ti-Zr-Nb system
Ti-Zr-Nb系BCC中熵合金新一代高温结构材料的研制
  • 批准号:
    23KJ1302
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Kink-band strengthening of Ti-based high entropy mille-feuille structured materials
钛基高熵千层结构材料的扭结带强化
  • 批准号:
    22K03808
  • 财政年份:
    2022
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
  • 批准号:
    22H01130
  • 财政年份:
    2022
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of CoCr-based highe entropy alloys for metallic biomaterials (CoCr-BioHEA) without any segregation
开发用于金属生物材料的 CoCr 基高熵合金 (CoCr-BioHEA),无任何偏析
  • 批准号:
    22H01816
  • 财政年份:
    2022
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Magnetic Recording Media based on High Entropy Alloys
基于高熵合金的磁记录介质
  • 批准号:
    2151809
  • 财政年份:
    2022
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Reconsideration of temperatures for non-equilibrium plasmas with low-ionization degree based on various entropy theory
基于各种熵理论对低电离度非平衡等离子体温度的再思考
  • 批准号:
    22K03566
  • 财政年份:
    2022
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of specific organic synthetic reactions based on anti-entropy control
基于反熵控制的特定有机合成反应的发展
  • 批准号:
    22K05469
  • 财政年份:
    2022
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了