Symbolic Stability and Bifurcation Analysis of Time-Periodic Differential-Delay Equations: Applications to High-Speed Machining Models

时间周期微分时滞方程的符号稳定性和分岔分析:在高速加工模型中的应用

基本信息

  • 批准号:
    0114500
  • 负责人:
  • 金额:
    $ 20.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-15 至 2006-01-31
  • 项目状态:
    已结题

项目摘要

PIs: Eric A. Butcher and Edward Bueler University of Alaska, FairbanksProposal # 0114500Symbolic Stability and Bifurcation Analysis of Time-Periodic Differential-Delay Equations: Applications to High-Speed Machining ModelsProject Abstract This project concerns the development and application of a unique method for the symbolic computation of linear stability boundaries in time-periodic differential-delay equations (DDEs). Such equations arise in several linearized models of chatter instability in high-speed machining, including milling with arbitrary immersion level and turning with modulated speed or impedance, as well as in other important engineering and scientific applications. In addition, the local nonlinear bifurcation analysis for the full nonlinear models is also performed. These objectives are accomplished by combining some important topics and recent methodologies in high-speed machining, symbolic computation, and nonlinear dynamics into a single research thrust. By incorporating time-delay into an existing symbolic algorithm for stability analysis of time-periodic systems, the stability boundaries (for example, in the two-parameter plane of spindle speed and depth of cut) which predict chatter in machining operations are obtained analytically. This task constitutes the first phase of the work plan and represents a significant design tool since, given a value of one parameter (say spindle speed), the critical value of the other (cutting depth) is easily obtained. Consequently, this approach provides an attractive alternative to designers who often try to operate in a narrow spindle speed range on the stability chart while retaining as high a cutting speed as possible. Since recent research on chatter instability in turning indicates that linear stability analysis alone is inadequate and should be accompanied by a full nonlinear analysis, the second phase of the work plan, namely the analytical bifurcation analysis for the time-periodic milling models, is accomplished by combining existing computational tools for time-periodic systems with the Hopf bifurcation algorithm for DDEs. The results thus obtained allows the determination of the critical parameter set for loss of global stability and the domain of attraction just prior to loss of local stability. Experimental validation of the theoretical results is made by collaborators at NIST. This project fosters cross-disciplinary education in engineering and mathematics through training graduate students and bringing current research and practice (including symbolic computation) into undergraduate classrooms.
PIS:Eric A.Butcher和Edward Bueler University of Alaska,Fairbank建议#0114500时间周期微分延迟方程的符号稳定性和分叉分析:应用于高速加工模型项目摘要本项目涉及一种独特的方法的发展和应用,用于符号计算时间周期微分延迟方程(DDES)的线性稳定边界。这些方程出现在高速加工中颤振不稳定性的几个线性化模型中,包括任意浸没程度的铣削和调制速度或阻抗的车削,以及在其他重要的工程和科学应用中。此外,还对完全非线性模型进行了局部非线性分叉分析。这些目标是通过将高速加工、符号计算和非线性动力学中的一些重要主题和最新方法结合到一个研究主题中来实现的。通过将时滞引入到已有的时间周期系统稳定性分析的符号算法中,解析地得到了预测加工过程中颤振的稳定性边界(例如,在主轴速度和切深两个参数平面内)。这项任务是工作计划的第一阶段,是一个重要的设计工具,因为给定一个参数值(例如主轴转速),就可以很容易地获得另一个参数值(切割深度)的临界值。因此,这种方法为设计人员提供了一种有吸引力的替代方案,这些设计人员经常试图在稳定性图表上的较窄主轴速度范围内操作,同时保持尽可能高的切割速度。最近对车削颤振不稳定性的研究表明,单单进行线性稳定性分析是不够的,需要进行全面的非线性分析,因此第二阶段的工作计划,即时间周期铣削模型的解析分叉分析,是通过将已有的时间周期系统的计算工具与偏微分方程的Hopf分叉算法相结合来完成的。由此得到的结果允许确定全局稳定性丧失的临界参数集以及在局部稳定性丧失之前的吸引域。NIST的合作者对理论结果进行了实验验证。该项目通过培训研究生和将当前的研究和实践(包括符号计算)带入本科生课堂,促进工程和数学的跨学科教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Butcher其他文献

Framework for the full N-body problem in SE(3) and its reduction to the circular restricted full three-body problem
  • DOI:
    10.1007/s10569-023-10156-1
  • 发表时间:
    2023-07-10
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Morad Nazari;David Canales;Brennan McCann;Eric Butcher;Kathleen Howell
  • 通讯作者:
    Kathleen Howell

Eric Butcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Butcher', 18)}}的其他基金

Collaborative Research: Resilient Decentralized Estimation and Control for Cooperative Rigid Body Multivehicle Systems
协作研究:协作刚体多车辆系统的弹性分散估计和控制
  • 批准号:
    1561836
  • 财政年份:
    2016
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Stability, Identification, and Stochastic Resonance in Stochastic Delayed Systems
合作研究:随机延迟系统中的稳定性、辨识和随机共振
  • 批准号:
    0900289
  • 财政年份:
    2009
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Standard Grant

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bifurcation, Stability, and Non-uniqueness in Ideal Fluids
理想流体中的分岔、稳定性和非唯一性
  • 批准号:
    2205910
  • 财政年份:
    2022
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Standard Grant
Stability and bifurcation analysis of the equation of the compressible viscoelastic fluid
可压缩粘弹性流体方程的稳定性及分岔分析
  • 批准号:
    19J10056
  • 财政年份:
    2019
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Bifurcation-based stability analysis of hybrid dynamical systems with smooth approximating mode switching functions
具有平滑逼近模式切换函数的混合动力系统的基于分岔的稳定性分析
  • 批准号:
    18K11460
  • 财政年份:
    2018
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability and bifurcation analysis for coupled systems of differential equations with random perturbations
具有随机扰动的微分方程耦合系统的稳定性和分岔分析
  • 批准号:
    388378-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Postdoctoral Fellowships
Stability and bifurcation analysis for coupled systems of differential equations with random perturbations
具有随机扰动的微分方程耦合系统的稳定性和分岔分析
  • 批准号:
    388378-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Postdoctoral Fellowships
Infinite-dimensional dynamical systems: nonlinear stability, large-time transient behaviors, and bifurcation
无限维动力系统:非线性稳定性、大时间瞬态行为和分岔
  • 批准号:
    1007450
  • 财政年份:
    2010
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Standard Grant
Stability and bifurcation for periodic minimal surfaces and surfaces with constant mean curvature, and applications to other fields
周期极小曲面和平均曲率恒定曲面的稳定性和分岔及其在其他领域的应用
  • 批准号:
    22654009
  • 财政年份:
    2010
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Symmetry, stability and bifurcation in n-body dynamics
n 体动力学中的对称性、稳定性和分岔
  • 批准号:
    41872-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetry, stability and bifurcation in n-body dynamics
n 体动力学中的对称性、稳定性和分岔
  • 批准号:
    41872-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetry, stability and bifurcation in n-body dynamics
n 体动力学中的对称性、稳定性和分岔
  • 批准号:
    41872-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 20.56万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了