Infinite-dimensional dynamical systems: nonlinear stability, large-time transient behaviors, and bifurcation
无限维动力系统:非线性稳定性、大时间瞬态行为和分岔
基本信息
- 批准号:1007450
- 负责人:
- 金额:$ 14.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When modeling physical or biological processes, one main goal is to use the model to predict the behaviors of the system that will be observed in the real world. Stable states of the system will attract all nearby configurations, and thus they can play an important role in determining the behavior. On the other hand, if the time-scale on which the system evolves toward that state is very long, one may never be able to wait long enough to see the stable behavior emerge. It is therefore important to also understand the transient behaviors that persist for long times. This proposal is concerned with developing mathematical techniques for both determining if a given state is stable and also for investigating such transient behaviors. In addition, certain bifurcations that capture when a state loses stability are analyzed. This is accomplished through the analysis of three main problems: determining the nonlinear stability of sources, a certain type of time-periodic pattern in reaction-diffusion equations; characterizing transient, yet persistent, dynamics in the two-dimensional Navier-Stokes equation; and analyzing the loss of stability of spatially periodic waves in a cardiac model and its connection with irregular heartbeats.One primary goal of the mathematical modeling of physical and biological processes, in general, is to predict the way the system will behave in time. One way to do this is to look for so-called stable states. Stable states attract all nearby configurations, and thus provide great insight into the types of behaviors that will be observed. For example, when studying a model of cardiac dynamics, a periodic solution could correspond to regular heartbeats. If this solution is stable, then, even when subject to disruptions in its natural rhythm, the heart will relax back to regular beating. However, if a bifurcation occurs in which the periodic solution loses stability, this could correspond to a scenario in which arrhythmia, or irregular beating, will occur. Since this behavior is undesirable, one would like to determine, via mathematical modeling, how to adjust certain parameters in the system so that the periodic solution does not lose stability. This proposal concerns the development of mathematical techniques that allow one to determine if a given solution is stable, ways in which the solution could lose stability, and what types of transient behaviors one could observe as the system relaxes to a stable solution. The analysis is carried out in three main mathematical settings, each of which is related to applications in biology, such as the cardiac dynamics mentioned above, or physics, such as fluid dynamics.
当对物理或生物过程建模时,一个主要目标是使用模型来预测将在真实的世界中观察到的系统的行为。系统的稳定状态将吸引所有附近的配置,因此它们可以在确定行为方面发挥重要作用。另一方面,如果系统向那个状态演化的时间尺度很长,人们可能永远无法等待足够长的时间来看到稳定行为的出现。因此,了解长期存在的瞬态行为也很重要。这个建议是关于发展数学技术,以确定一个给定的状态是否稳定,也为调查这种瞬态行为。此外,某些分岔捕获时,一个国家失去稳定性进行了分析。这是通过分析三个主要问题来完成的:确定源的非线性稳定性,反应扩散方程中的某种类型的时间周期模式,描述二维Navier-Stokes方程中的瞬态但持续的动力学;以及分析心脏模型中的空间周期波的稳定性的损失及其与不规则心跳的联系。物理和生物过程,一般来说,是预测系统将在时间上的行为方式。一种方法是寻找所谓的稳定状态。稳定状态吸引所有附近的配置,从而提供了对将被观察到的行为类型的深入了解。例如,当研究心脏动力学模型时,周期性解可以对应于规律的心跳。如果这种解决方案是稳定的,那么,即使在其自然节奏受到干扰时,心脏也会放松,恢复正常跳动。然而,如果发生周期解失去稳定性的分叉,这可能对应于将发生心律失常或不规则跳动的情况。由于这种行为是不期望的,人们希望通过数学建模来确定如何调整系统中的某些参数,使得周期解不会失去稳定性。这个建议涉及的数学技术的发展,允许一个确定是否一个给定的解决方案是稳定的,解决方案可能会失去稳定性的方式,以及什么类型的瞬态行为可以观察到系统放松到一个稳定的解决方案。 分析是在三个主要的数学环境中进行的,每个数学环境都与生物学中的应用有关,例如上面提到的心脏动力学,或者物理学,例如流体动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margaret Beck其他文献
The Maslov Index, Degenerate Crossings and the Stability of Pulse Solutions to the Swift-Hohenberg equation
- DOI:
10.1007/s10884-025-10436-4 - 发表时间:
2025-06-03 - 期刊:
- 影响因子:1.300
- 作者:
Margaret Beck;Jonathan Jaquette;Hannah Pieper - 通讯作者:
Hannah Pieper
Tewa Red and the Puebloan diaspora: The making of Ledbetter Red
- DOI:
10.1016/j.jasrep.2016.01.036 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Margaret Beck;Sarah Trabert;David V. Hill;Matthew E. Hill - 通讯作者:
Matthew E. Hill
Stability of patterns in reaction-diffusion equations
反应扩散方程模式的稳定性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Margaret Beck - 通讯作者:
Margaret Beck
Margaret Beck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margaret Beck', 18)}}的其他基金
Dynamics of Partial Differential Equations: Topological Implications for Stability and Analysis in Higher Spatial Dimensions
偏微分方程的动力学:更高空间维度稳定性和分析的拓扑含义
- 批准号:
2205434 - 财政年份:2022
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Analysis of Partial Differential Equations Using Dynamical Systems Techniques
使用动力系统技术分析偏微分方程
- 批准号:
1600061 - 财政年份:2016
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Stability and metastability of coherent structures in dissipative PDE
耗散偏微分方程中相干结构的稳定性和亚稳定性
- 批准号:
1411460 - 财政年份:2014
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Doctoral Dissertation Improvement Grant: Identity Beyond the Colonial Core: Spanish Colonialism and Ceramic Technology of the Dismal River Aspect Culture (1675-1725 CE)
博士论文改进补助金:殖民核心之外的身份:西班牙殖民主义和惨淡河流文化的陶瓷技术(1675-1725 CE)
- 批准号:
1316758 - 财政年份:2013
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Interaction and Migration in the Sonoran Desert, A.D. 900-1300
索诺兰沙漠中的互动和迁徙,公元 900-1300 年
- 批准号:
0830269 - 财政年份:2008
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Interaction and Migration in the Sonoran Desert, A.D. 900-1300
索诺兰沙漠中的互动和迁徙,公元 900-1300 年
- 批准号:
0639365 - 财政年份:2007
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Ergodic properties of infinite dimensional dynamical systems
无限维动力系统的遍历性质
- 批准号:
2888861 - 财政年份:2023
- 资助金额:
$ 14.27万 - 项目类别:
Studentship
Studies on rigorous integrator for infinite dimensional dynamical systems
无限维动力系统严格积分器研究
- 批准号:
22K03411 - 财政年份:2022
- 资助金额:
$ 14.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2108285 - 财政年份:2021
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2210867 - 财政年份:2021
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Lie Groupoids and Infinite-Dimensional Dynamical Systems
李群群和无限维动力系统
- 批准号:
2008021 - 财政年份:2020
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Conference: A Broad Perspective on Finite and Infinite Dimensional Dynamical Systems'
会议:有限和无限维动力系统的广阔视角
- 批准号:
1700154 - 财政年份:2017
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
New development of theory of generalized functionals, an infinite dimensional stochastic analysis and applications to theory of quantum dynamical system
广义泛函理论新进展、无限维随机分析及其在量子动力系统理论中的应用
- 批准号:
15K04940 - 财政年份:2015
- 资助金额:
$ 14.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability and Long Time Behavior for Infinite-Dimensional Dynamical Systems
无限维动力系统的稳定性和长时间行为
- 批准号:
1516245 - 财政年份:2015
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413603 - 财政年份:2014
- 资助金额:
$ 14.27万 - 项目类别:
Continuing Grant
Computational Intersection Theory for Infinite Dimensional Dynamical Systems
无限维动力系统的计算交集理论
- 批准号:
1461416 - 财政年份:2014
- 资助金额:
$ 14.27万 - 项目类别:
Standard Grant














{{item.name}}会员




