CAREER: Probabilistic Models for Integrating Biochemical and Morphological Markers for Cancer

职业:整合癌症生化和形态标志物的概率模型

基本信息

  • 批准号:
    0133804
  • 负责人:
  • 金额:
    $ 36.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

0133804SajdaUnder this CAREER Award, a new set of computer-assisted analysis techniques will be developed to improve the noninvasive diagnosis of brain cancer by integrating biochemical and morphological markers from MRSI (magnetic resonance spectroscopy imaging) and MRI (magnetic resonance imaging). MRSI, which allows for characterization and quantification of biochemical metabolites and the construction of metabolite intensity images, combined with MRI provides a biochemical and morphological view of the disease. Using short MRSI echo time techniques, 10-20 dimensional multi-variant feature space will be studied to uncover specific signatures for characterizing cancer. Specific aims include: develop "semi-blind" source separation using a maximum a posteriori framework for recovery of metabolite intensity images in MRSI; characterize the correlations and dependencies between metabolite intensity images and morphological information derived from MRI; develop a hierarchical probabilistic model for integrating metabolite intensity images with MRI for the joint biochemical/morphological characterization of brain tumors; and assess the performance of the models within the context of computer-assisted diagnosis, making comparisons to traditional methods that have relied on fairly elementary relationships, such as the ratio of two metabolite concentrations.The educational component of the proposal focuses on a program in machine learning for biomedical engineering, including a new course and computer laboratories and efforts that would serve as a basis of an industrial internship program. The course will introduce students to the mathematical theory behind machine learning and probabilistic models, their application to the biomedical sciences, and techniques for evaluating and validating their performance.
0133804 Sajda在这项CAREER奖下,将开发一套新的计算机辅助分析技术,通过整合MRSI(磁共振光谱成像)和MRI(磁共振成像)的生物化学和形态学标志物,改善脑癌的非侵入性诊断。 MRSI允许生化代谢物的表征和定量以及代谢物强度图像的构建,与MRI结合提供了疾病的生化和形态学视图。 使用短MRSI回波时间技术,将研究10-20维多变量特征空间,以揭示表征癌症的特定特征。 具体目标包括:使用最大后验框架开发“半盲”源分离,用于恢复MRSI中的代谢物强度图像;表征代谢物强度图像与源自MRI的形态信息之间的相关性和依赖性;开发用于将代谢物强度图像与MRI整合的分层概率模型,用于脑肿瘤的联合生化/形态表征;并在计算机辅助诊断的背景下评估模型的性能,与依赖于相当基本关系的传统方法进行比较,例如两种代谢物浓度的比率。该提案的教育部分侧重于生物医学工程的机器学习计划,包括一个新的课程和计算机实验室和努力,将作为一个工业实习计划的基础。 本课程将向学生介绍机器学习和概率模型背后的数学理论,它们在生物医学科学中的应用,以及评估和验证其性能的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Sajda其他文献

Combined TMS-EEG-fMRI to unravel phase sensitivity of BOLD response
  • DOI:
    10.1016/j.brs.2023.01.234
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark S. George;Truman Brown;Paul Sajda
  • 通讯作者:
    Paul Sajda
Whole-brain analysis of concurrent TMS-EEG-fMRI reveals brain-wide state-dependent TMS effects
  • DOI:
    10.1016/j.brs.2023.01.825
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hengda He;Xiaoxiao Sun;Jayce Doose;Aidan Blankenship;James Mclntosh;Golbarg Saber;Josef Faller;Yida Lin;Joshua Teves;Sarah Huffman;Spiro Pantazatos;Robin Goldman;Mark George;Truman Brown;Paul Sajda
  • 通讯作者:
    Paul Sajda
An interaction-centric approach for quantifying eye-to-eye reciprocal interaction
一种以互动为中心的眼神相互互动量化方法
  • DOI:
    10.1016/j.neuroimage.2025.121175
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Ray Lee;Paul Sajda;Nim Tottenham
  • 通讯作者:
    Nim Tottenham
Closing the loop faster: closed-loop accelerated rTMS targeting EEG alpha phase for depression and suicide risk
更快地闭合回路:针对脑电图α相位的闭环加速重复经颅磁刺激用于抑郁症和自杀风险
  • DOI:
    10.1016/j.brs.2024.12.1011
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Jayce Doose;Xiaoxiao Sun;Christian Finetto;Ruxue Gong;Corbin Ping;Jacob Eade;Gavin Doyle;Chichi Chang;Sara Hashempour;Robin Goldman;Han Yuan;Mark George;Paul Sajda;Lisa McTeague
  • 通讯作者:
    Lisa McTeague
Closed-loop phase-locked rTMS treatment decreases global cortical excitability in major depressive disorder patients
  • DOI:
    10.1016/j.brs.2023.01.801
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaoxiao Sun;Jayce Doose;Josef Faller;James Mclntosh;Golbarg Saber;Yida Lin;Joshua Teves;Aidan Blankenship;Sarah Huffman;Robin Goldman;Mark George;Truman Brown;Paul Sajda
  • 通讯作者:
    Paul Sajda

Paul Sajda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Sajda', 18)}}的其他基金

CHS: Small: Optimizing Human-Machine Performance via Neurofeedback and Adaptive Autonomy
CHS:小型:通过神经反馈和自适应自主优化人机性能
  • 批准号:
    1816363
  • 财政年份:
    2018
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
  • 批准号:
    2238375
  • 财政年份:
    2023
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Models for Spatiotemporal Data with Applications to Dynamic Brain Connectivity
职业:时空数据的概率模型及其在动态大脑连接中的应用
  • 批准号:
    2046795
  • 财政年份:
    2021
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: Learning Probabilistic Factor Models
职业:学习概率因子模型
  • 批准号:
    1943902
  • 财政年份:
    2020
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
  • 批准号:
    2011255
  • 财政年份:
    2019
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations for Probabilistic Models with Dense Random Matrices
职业:密集随机矩阵概率模型的理论基础
  • 批准号:
    1750362
  • 财政年份:
    2018
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
  • 批准号:
    1652862
  • 财政年份:
    2017
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: Hierarchical Probabilistic Models for Networks with Rich Data in Scientific Domains
职业:科学领域中具有丰富数据的网络的分层概率模型
  • 批准号:
    1452718
  • 财政年份:
    2015
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: Connecting Human and Machine Learning through Probabilistic Models of Cognition
职业:通过概率认知模型连接人类和机器学习
  • 批准号:
    0845410
  • 财政年份:
    2009
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Probabilistic Topic Models
职业:概率主题模型的新方向
  • 批准号:
    0745520
  • 财政年份:
    2008
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
CAREER: Integrating denotational meaning into probabilistic language models
职业:将指称意义整合到概率语言模型中
  • 批准号:
    0447685
  • 财政年份:
    2005
  • 资助金额:
    $ 36.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了