CHS: Small: Optimizing Human-Machine Performance via Neurofeedback and Adaptive Autonomy
CHS:小型:通过神经反馈和自适应自主优化人机性能
基本信息
- 批准号:1816363
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our society is being fundamentally transformed by increased interaction between humans and autonomous artificial intelligence (AI) systems. However, the addition of autonomy to our lives will not be successful unless we understand how smart machines and humans should best interact and communicate. Human-machine communication today is almost entirely linguistic, using spoken language for systems such as Siri or Alexa, or typed text for chatbots. However, humans communicate extremely efficiently with each other byu sing much more than just words; for example by being sensitive to facial expression, gestures, gait, and intonation. In fact, great teams, whether sports teams or military combat teams, are excellent at predicting teammates behavior and state of mind. In this project, the investigators consider both basic science and technology questions with respect to how to communicate that cognitive and physiological state of a human that is co-operating with an autonomous AI. The project has very broad implications since it addresses fundamental questions related to the interactions between humans and smart machines.The project investigates the hypothesis that adaptive autonomy together with coordinated neurofeedback can be employed in the same system to optimize human-machine performance. Investigators will develop a framework and investigate the hypothesis within the context of boundary avoidance tasks, or BAT, which is a class of tasks in which task critical boundaries surround the optimal operating point of the control system. These tasks are particularly interesting when considering human control because they typically result in a positive feedback loop that systematically increases the arousal state of the human subject, resulting in increasingly poor task performance and ultimate task failure, consistent with the Yerkes-Dodson law. Our framework uses a brain-computer interface (BCI) to both engage autonomy as well as being a source for neurofeedback that can shift human subjects to their performance 'sweet-spot'. This project will advance the science and technology development of how human-machine systems can be optimally integrated, specifically when both 1) the machine has access to ongoing changes in human cognitive and physiological state during performance of the task and 2) the human is made aware of their own state via appropriate neurofeedback.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们的社会正在从根本上改变人类与自主人工智能(AI)系统之间的互动。然而,除非我们理解智能机器和人类应该如何最好地互动和沟通,否则将自主权添加到我们的生活中不会成功。今天的人机通信几乎完全是语言的,使用Siri或Alexa等系统的口语,或聊天机器人的输入文本。 然而,人类之间的交流非常有效,不仅仅是通过语言,例如通过对面部表情,手势,步态和语调的敏感。事实上,伟大的团队,无论是运动队还是军事战斗队,都擅长预测队友的行为和精神状态。在这个项目中,研究人员考虑了基本的科学和技术问题,即如何传达与自主AI合作的人类的认知和生理状态。该项目具有非常广泛的意义,因为它解决了与人类和智能机器之间的相互作用有关的基本问题。该项目研究了一种假设,即自适应自主性与协调的神经反馈可以在同一系统中使用,以优化人机性能。研究人员将开发一个框架,并在边界回避任务(BAT)的背景下研究假设,BAT是一类任务,其中任务关键边界围绕控制系统的最佳操作点。当考虑人类控制时,这些任务特别有趣,因为它们通常会导致系统地增加人类受试者的唤醒状态的正反馈回路,导致越来越差的任务表现和最终的任务失败,这与Yerkes-Dodson定律一致。我们的框架使用脑机接口(BCI)来实现自主性,并成为神经反馈的来源,可以将人类受试者转移到他们的表现“甜蜜点”。该项目将推动人机系统如何最佳整合的科学和技术发展,特别是当1)机器在执行任务期间可以访问人类认知和生理状态的持续变化,以及2)该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating Evoked EEG Responses to Targets Presented in Virtual Reality
研究对虚拟现实中呈现的目标的诱发脑电图反应
- DOI:10.1109/embc.2019.8856761
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lapborisuth, Pawan;Faller, Josef;Koss, Jonathan;Waytowich, Nicholas R.;Touryan, Jonathan;Sajda, Paul
- 通讯作者:Sajda, Paul
Integrating neural and ocular attention reorienting signals in virtual reality
- DOI:10.1088/1741-2552/ac4593
- 发表时间:2021-12
- 期刊:
- 影响因子:4
- 作者:Pawan Lapborisuth;Sharath C. Koorathota;Qi Wang;P. Sajda
- 通讯作者:Pawan Lapborisuth;Sharath C. Koorathota;Qi Wang;P. Sajda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Sajda其他文献
Combined TMS-EEG-fMRI to unravel phase sensitivity of BOLD response
- DOI:
10.1016/j.brs.2023.01.234 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Mark S. George;Truman Brown;Paul Sajda - 通讯作者:
Paul Sajda
Whole-brain analysis of concurrent TMS-EEG-fMRI reveals brain-wide state-dependent TMS effects
- DOI:
10.1016/j.brs.2023.01.825 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Hengda He;Xiaoxiao Sun;Jayce Doose;Aidan Blankenship;James Mclntosh;Golbarg Saber;Josef Faller;Yida Lin;Joshua Teves;Sarah Huffman;Spiro Pantazatos;Robin Goldman;Mark George;Truman Brown;Paul Sajda - 通讯作者:
Paul Sajda
An interaction-centric approach for quantifying eye-to-eye reciprocal interaction
一种以互动为中心的眼神相互互动量化方法
- DOI:
10.1016/j.neuroimage.2025.121175 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:4.500
- 作者:
Ray Lee;Paul Sajda;Nim Tottenham - 通讯作者:
Nim Tottenham
Closing the loop faster: closed-loop accelerated rTMS targeting EEG alpha phase for depression and suicide risk
更快地闭合回路:针对脑电图α相位的闭环加速重复经颅磁刺激用于抑郁症和自杀风险
- DOI:
10.1016/j.brs.2024.12.1011 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Jayce Doose;Xiaoxiao Sun;Christian Finetto;Ruxue Gong;Corbin Ping;Jacob Eade;Gavin Doyle;Chichi Chang;Sara Hashempour;Robin Goldman;Han Yuan;Mark George;Paul Sajda;Lisa McTeague - 通讯作者:
Lisa McTeague
Closed-loop phase-locked rTMS treatment decreases global cortical excitability in major depressive disorder patients
- DOI:
10.1016/j.brs.2023.01.801 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Xiaoxiao Sun;Jayce Doose;Josef Faller;James Mclntosh;Golbarg Saber;Yida Lin;Joshua Teves;Aidan Blankenship;Sarah Huffman;Robin Goldman;Mark George;Truman Brown;Paul Sajda - 通讯作者:
Paul Sajda
Paul Sajda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Sajda', 18)}}的其他基金
CAREER: Probabilistic Models for Integrating Biochemical and Morphological Markers for Cancer
职业:整合癌症生化和形态标志物的概率模型
- 批准号:
0133804 - 财政年份:2002
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
III: Small: Deep Interactive Reinforcement Learning for Self-optimizing Feature Selection
III:小:用于自优化特征选择的深度交互式强化学习
- 批准号:
2152030 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms
合作研究:CNS Core:小型:优化大规模异构机器学习平台
- 批准号:
2146909 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
FET: Small: Optimizing quantum circuit design
FET:小型:优化量子电路设计
- 批准号:
2301120 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Optimizing Large-Scale Heterogeneous ML Platforms
合作研究:CNS Core:小型:优化大规模异构机器学习平台
- 批准号:
2146814 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
CIF: Small: Foundations of Decentralized Data Science: Optimizing Utility, Privacy and Communication Efficiency
CIF:小型:去中心化数据科学的基础:优化实用性、隐私和通信效率
- 批准号:
2213223 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Optimizing Small Molecule Read-Through Compounds for Treating AtaxiaTelangiectasia
优化小分子通读化合物治疗共济失调毛细血管扩张症
- 批准号:
10434554 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
FET: Small: Optimizing quantum circuit design
FET:小型:优化量子电路设计
- 批准号:
2210063 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Optimizing Small Molecule Lipoxin-Mimicking FPR2 Agonists for the Treatment of Alzheimers Disease
优化小分子脂氧素模拟 FPR2 激动剂用于治疗阿尔茨海默病
- 批准号:
10255973 - 财政年份:2021
- 资助金额:
$ 49.88万 - 项目类别:
Optimizing a small molecule inhibitor of SARS-CoV-2 replication and associated cytokine storm
优化 SARS-CoV-2 复制和相关细胞因子风暴的小分子抑制剂
- 批准号:
10681264 - 财政年份:2021
- 资助金额:
$ 49.88万 - 项目类别: