Collaborative Research: FRG: Class numbers, hyperbolic manifolds and dynamical systems
合作研究:FRG:类数、双曲流形和动力系统
基本信息
- 批准号:0139875
- 负责人:
- 金额:$ 33.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0139875Alan ReidThe problem of constructing infinitely many number fields of classnumber one descends from Gauss's work on quadratic forms, and remainsone of the major unsolved problems in algebraic number theory. Thishas been the inspiration for many new ideas and techniques inalgebraic number theory and arithmetic geometry. The proposers plan asustained attack on this problem using geometric methods based uponrecent advances in the theory of hyperbolic manifolds coupled with anatural broadening of the classical Bianchi- Hurwitz theorem.Possible important mathematical by-products include new techniquesfor estimating class numbers and an improvement of theunderstanding of properties of the trace fields of hyperbolicmanifolds.Further consequences of this work of a somewhat broader impact alsoseem possible. The most obviously relevant applications seem tocome from the direction of cryptography. The difficulty of factoringnumbers into primes is the basis for the RSA cryptosystem. The fastestknown algorithm for factoring large whole numbers into primes is theso-called number field sieve, and the techniques from algebraic numbertheory involved in this sieve were developed in part from work on classnumbers. This project could impact such algorithms and progress onfactoring problems would have significant implications for cryptography. This award is jointly funded by the programs in Topology and Algebra,Number Theory, & Combinatorics.
艾伦·里德:第一类无穷多个数域的构造问题源于高斯关于二次型的研究,是代数数论中尚未解决的主要问题之一。这启发了代数数论和算术几何中的许多新思想和新技术。在双曲流形理论最新进展的基础上,结合经典Bianchi- Hurwitz定理的自然展宽,提出了利用几何方法持续解决这一问题的方案。可能的重要数学副产品包括估计类数的新技术和对双曲流形迹场性质的理解的改进。这项工作的进一步结果似乎也有可能产生更广泛的影响。最明显的相关应用似乎来自密码学方向。将数分解成质数的困难是RSA密码系统的基础。已知将大整数分解为质数的最快算法是所谓的“数域筛法”(number field sieve),这种筛法中涉及的代数数论技术部分是在对classnumber的研究中发展起来的。这个项目可能会影响这些算法,而分解问题的进展将对密码学产生重大影响。该奖项由拓扑学与代数、数论和组合学项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Reid其他文献
High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills - 通讯作者:
N. Mills
High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:37.8
- 作者:
A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills - 通讯作者:
N. Mills
Relational Symmetries of Disaster Resilience Explored Through the Sendai Framework’s Guiding Principles
通过仙台框架的指导原则探讨灾害恢复力的关系对称性
- DOI:
10.1007/s13753-024-00611-4 - 发表时间:
2025-01-23 - 期刊:
- 影响因子:4.000
- 作者:
Belinda Jane Davis;Alan Reid - 通讯作者:
Alan Reid
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
- DOI:
10.1101/2020.09.06.20189308 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills - 通讯作者:
N. Mills
Renewing the public and the role of research in education
- DOI:
10.1007/s13384-013-0116-x - 发表时间:
2013-07-30 - 期刊:
- 影响因子:2.400
- 作者:
Alan Reid - 通讯作者:
Alan Reid
Alan Reid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Reid', 18)}}的其他基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
- 批准号:
1755177 - 财政年份:2017
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
- 批准号:
1624301 - 财政年份:2016
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
- 批准号:
1542752 - 财政年份:2015
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
- 批准号:
1463740 - 财政年份:2015
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
- 批准号:
1305448 - 财政年份:2013
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
- 批准号:
1105002 - 财政年份:2011
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
- 批准号:
0968813 - 财政年份:2010
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
- 批准号:
0805828 - 财政年份:2008
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant