Finite covers of hyperbolic 3-manifolds

双曲3流形的有限覆盖

基本信息

  • 批准号:
    0805828
  • 负责人:
  • 金额:
    $ 38.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

Motivated by considerations in topology, geometry, arithmetic and group theory the proposal intends to study real, complex and quaternionic hyperbolic manifolds. This will involve the study of discrete groups, their connections with number theory, and expanding graphs. We will also explore various interconnections between these topics with a view to better understanding the topology of hyperbolic 3-manifolds.Three dimensional manifolds are locally like the space we live in and understanding these objects have been one of the central themes of research in the last 30 years. The importance of these objects extends far beyond their intrinsic interest, since their study connects to mathematical physics, mathematical biology and computer science. One of the aims of this proposal is to explore some of these connections via families of "expanding graphs". These graphs are well-known in computer science because of their importance in building efficient networks. Remarkably, this is connected to the main study of the proposal, "finite covers of 3-manifolds".By their nature, many of the problems in the proposal are cross-disciplinary, and hence progress will have a broader impact. In addition, these have proved to be fertile grounds for the training of graduate students.
出于对拓扑学、几何学、算术和群论的考虑,该提议打算研究实数、复数和四元数双曲流形。这将涉及到对离散群、它们与数论的联系以及扩展图的研究。我们还将探索这些主题之间的各种相互联系,以期更好地理解双曲三维流形的拓扑。三维流形局部地类似于我们生活的空间,理解这些对象一直是过去30年来研究的中心主题之一。这些物体的重要性远远超出了它们的内在兴趣,因为它们的研究与数学物理、数学生物学和计算机科学有关。这项提议的目的之一是通过“扩展图”家族来探索其中的一些联系。这些图在计算机科学中广为人知,因为它们在构建高效网络方面很重要。值得注意的是,这与该提案的主要研究“三维流形的有限覆盖”有关。根据其性质,该提案中的许多问题都是跨学科的,因此进展将产生更广泛的影响。此外,这些已被证明是培养研究生的肥沃土壤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Reid其他文献

High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills
  • 通讯作者:
    N. Mills
High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Relational Symmetries of Disaster Resilience Explored Through the Sendai Framework’s Guiding Principles
通过仙台框架的指导原则探讨灾害恢复力的关系对称性
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
  • DOI:
    10.1101/2020.09.06.20189308
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Renewing the public and the role of research in education

Alan Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Reid', 18)}}的其他基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Representations and Rigidity
表述和刚性
  • 批准号:
    1812397
  • 财政年份:
    2018
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1755177
  • 财政年份:
    2017
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
  • 批准号:
    1624301
  • 财政年份:
    2016
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
  • 批准号:
    1542752
  • 财政年份:
    2015
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1463740
  • 财政年份:
    2015
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
  • 批准号:
    1305448
  • 财政年份:
    2013
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
  • 批准号:
    1105002
  • 财政年份:
    2011
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
  • 批准号:
    0968813
  • 财政年份:
    2010
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
EMSW21-RTG-Program in low-dimensional topology and its applications
低维拓扑中的EMSW21-RTG-程序及其应用
  • 批准号:
    0636643
  • 财政年份:
    2007
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Thermo-Regulating Mobile Covers for Indoor Energy Savings
用于室内节能的温度调节移动罩
  • 批准号:
    EP/Y030397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Research Grant
Creating a practical training course that covers from commonality and diversity of living organisms to molecular biology based on mating
创建实用培训课程,涵盖从生物体的共性和多样性到基于交配的分子生物学
  • 批准号:
    23K02762
  • 财政年份:
    2023
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Impact of differential settlement of oil sand fine tailings on reclamation covers
油砂细尾矿差异沉降对复垦覆盖层的影响
  • 批准号:
    RGPIN-2019-04573
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
Testing effects of soil amendments on nutrient poor mine covers soils at the MOST Facility
在 MOST 设施中测试土壤改良剂对营养不良矿井覆盖土壤的影响
  • 批准号:
    571034-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Alliance Grants
Assessment of landfill final covers employing contaminated soils
使用受污染土壤评估垃圾填埋场最终覆盖层
  • 批准号:
    575428-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Alliance Grants
Integration of clayey materials in the engineered covers and improvement of their performance evaluation techniques
将粘土材料整合到工程覆盖层中并改进其性能评估技术
  • 批准号:
    RGPIN-2017-06787
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Discovery Grants Program - Individual
Geochemical implications of soil covers on oil sands sulfide tailings
土壤覆盖对油砂硫化物尾矿的地球化学影响
  • 批准号:
    545559-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Evaluating Actions, Obstructions, and Reductions for Covers of Curves
评估曲线覆盖的动作、障碍和缩减
  • 批准号:
    2200418
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
MPS-Ascend: Bi-Orderability, Fibered Knots, and Cyclic Branched Covers
MPS-Ascend:双向可排序性、纤维结和循环分支覆盖层
  • 批准号:
    2213213
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Fellowship Award
CAREER: Branched Covers in Dimensions Three and Four
职业:第三维度和第四维度的分支封面
  • 批准号:
    2145384
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了