Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
基本信息
- 批准号:0968813
- 负责人:
- 金额:$ 16.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The geometry of Banach spaces is centrally located to successfully interact with many areas of mathematics including analysis and applied mathematics. This proposal involves problems that, in particular, interact with set theory, combinatorics, approximation theory and operator theory. The interaction with set theory comes about from embedding theorems in Banach spaces that could not hold without Martin's theorem that Borel games are determined. In turn their existence has had implications for set theory. Recent surprising embedding theorems of the investigator and co-authors are ripe for further development and application and this proposal contains such problems. In particular these results have implications on possible operator structures and how certain "outliers" exist much more widely than previously supposed. The geometry of Banach spaces has played a big role in the development by approximation theorists of various notions of greedy approximations. Problems extending the boundary of what is known in this region are also included in the proposal. The interaction with combinatorics is through Ramsey theory and its relation to the geometric notion of "partial unconditionality." This has remained a tough frontier for nearly 30 years, but as the interactions between researchers in both areas increase so is the likelihood that this can be successfully attacked.This proposal could ultimately have impact in mathematical physics through the yet unproven (but now much more likely) existence of a space very close to Hilbert space where all the operators are simply written down. Physicists, rather than using Hilbert (i. e. Euclidean) space as a model for natural phenomena might be able to use a weak form of the space studied by Banach space geometers, if they can identify the operators on the space. Such a space may exist with very few operators, ones easily handled by theorists. Part of this proposal is to prove the widespread existence of such very few operator spaces. This is a first step towards the goal above. Another part of this proposal deals with problems in greedy approximation. This is, in turn, connected with problems in signal processing. The central problem there is to transmit information accurately and efficiently. The mathematical connections of this proposed research are substantial and widespread, touching, in particular upon set theory, analysis, approximation theory, operator theory and combinatorics. Increased communication between researchers in these areas will be fostered and should likely lead to further connections.
巴拿赫空间的几何结构位于中心位置,可以成功地与许多数学领域进行交互,包括分析和应用数学。这个建议涉及的问题,特别是与集合论,组合学,近似理论和算子理论相互作用。与集合论的互动来自于Banach空间中的嵌入定理,如果没有Borel博弈是确定的Martin定理,这些定理就无法成立。反过来,它们的存在又对集合论产生了影响。最近研究者和合著者令人惊讶的嵌入定理已经成熟,可以进一步发展和应用,而这个提议包含了这样的问题。特别是,这些结果对可能的算子结构以及某些“异常值”如何比以前假设的更广泛地存在有影响。巴拿赫空间的几何在逼近理论家对贪心逼近的各种概念的发展中起着重要的作用。该建议还包括扩展该地区已知边界的问题。与组合学的互动是通过拉姆齐理论及其与几何概念“部分无条件”的关系。近30年来,这一直是一个棘手的前沿问题,但随着这两个领域的研究人员之间的互动增加,这一问题被成功攻克的可能性也在增加。这个提议最终可能会对数学物理产生影响,因为尚未被证明(但现在更有可能)存在一个非常接近希尔伯特空间的空间,在那里所有的算子都被简单地写下来。物理学家,而不是使用希尔伯特(即欧几里得)空间作为自然现象的模型,可能能够使用巴拿赫空间几何学者所研究的空间的弱形式,如果他们能够识别空间上的算子。这样的空间可能存在很少的算子,这些算子很容易被理论家处理。这个建议的一部分是为了证明这种极少算子空间的广泛存在。这是实现上述目标的第一步。本文的另一部分讨论了贪心逼近中的问题。这又与信号处理中的问题有关。中心问题是如何准确有效地传递信息。这个提议的研究的数学联系是实质性的和广泛的,特别是在集合论,分析,近似理论,算子理论和组合。将促进这些领域的研究人员之间增加交流,并可能导致进一步的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Reid其他文献
High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills - 通讯作者:
N. Mills
High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:37.8
- 作者:
A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills - 通讯作者:
N. Mills
Relational Symmetries of Disaster Resilience Explored Through the Sendai Framework’s Guiding Principles
通过仙台框架的指导原则探讨灾害恢复力的关系对称性
- DOI:
10.1007/s13753-024-00611-4 - 发表时间:
2025-01-23 - 期刊:
- 影响因子:4.000
- 作者:
Belinda Jane Davis;Alan Reid - 通讯作者:
Alan Reid
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
- DOI:
10.1101/2020.09.06.20189308 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills - 通讯作者:
N. Mills
Renewing the public and the role of research in education
- DOI:
10.1007/s13384-013-0116-x - 发表时间:
2013-07-30 - 期刊:
- 影响因子:2.400
- 作者:
Alan Reid - 通讯作者:
Alan Reid
Alan Reid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Reid', 18)}}的其他基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
- 批准号:
1755177 - 财政年份:2017
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
- 批准号:
1624301 - 财政年份:2016
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
- 批准号:
1542752 - 财政年份:2015
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
- 批准号:
1463740 - 财政年份:2015
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
- 批准号:
1305448 - 财政年份:2013
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Covering spaces of 3-manifolds and representations of their fundamental groups
3-流形的覆盖空间及其基本群的表示
- 批准号:
1105002 - 财政年份:2011
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
- 批准号:
0805828 - 财政年份:2008
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
EMSW21-RTG-Program in low-dimensional topology and its applications
低维拓扑中的EMSW21-RTG-程序及其应用
- 批准号:
0636643 - 财政年份:2007
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
相似海外基金
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Conference: The Many Interactions between Symplectic and Poisson Geometry
会议:辛几何和泊松几何之间的许多相互作用
- 批准号:
2304750 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Interactions between topology and geometry in low dimensions
低维拓扑和几何之间的相互作用
- 批准号:
2750813 - 财政年份:2022
- 资助金额:
$ 16.74万 - 项目类别:
Studentship
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
RGPIN-2022-03135 - 财政年份:2022
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
DGECR-2022-00437 - 财政年份:2022
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Launch Supplement
Interactions between combinatorics, representation theory, and algebraic geometry
组合数学、表示论和代数几何之间的相互作用
- 批准号:
2265021 - 财政年份:2019
- 资助金额:
$ 16.74万 - 项目类别:
Studentship
Interactions Between Contact Geometry, Floer Theory and Low-Dimensional Topology
接触几何、弗洛尔理论和低维拓扑之间的相互作用
- 批准号:
1907654 - 财政年份:2019
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Interactions Between Representation Theory and Algebraic Geometry
表示论与代数几何之间的相互作用
- 批准号:
1707808 - 财政年份:2017
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant