Covering spaces of 3-manifolds and representations of their fundamental groups

3-流形的覆盖空间及其基本群的表示

基本信息

  • 批准号:
    1105002
  • 负责人:
  • 金额:
    $ 29.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

The work of Perelman has resolved the geometrization conjecture of Thurston, thereby confirming that "most" closed 3-manifolds are hyperbolic. The expectation now is that, given Perelman's work, a great deal of the focus of 3-manifold topology will be on understanding the geometry and topology of finite volume hyperbolic 3-manifolds. Motivated by this the PI will study hyperbolic 3-manifolds, their fundamental groups and representations of their fundamental groups. This will involve the study of finite sheeted covering spaces, finite quotient groups, profinite completions of discrete groups, their connections with number theory, and expander families of graphs. The PI will also explore other discrete groups, like lattices in other Lie groups and Mapping Class Groups.Three dimensional manifolds are locally like the space we live in and understanding these objects have been one of the central themes of research in the last 30 years. The importance of these objects extends far beyond their intrinsic interest, since their study connects to mathematical physics, mathematical biology and computer science. Various algebraic objects can be associated to a three dimensional manifold, one of which (a group) captures symmetries of the manifold and other manifolds related to it. Much of the proposal is aimed at exploring properties of these groups. For example, the PI will explore their connections to families of so-called "expanding graphs". These graphs are well-known in computer science because of their importance in building efficient networks. In addition another project connects the modern mathematical world of flexible geometry to a question in elementary number theory that goes back to the ancient Egyptians. A solution to this old question via the techniques suggested would be very interesting.
Perelman的工作解决了瑟斯顿的几何化猜想,从而证实了“大多数”闭3-流形是双曲的。现在的期望是,鉴于Perelman的工作,三维流形拓扑学的很大一部分焦点将放在理解有限体积双曲三维流形的几何和拓扑上。受此启发,PI将学习双曲3-流形、它们的基本群和它们的基本群的表示。这将涉及到有限薄片覆盖空间、有限商群、离散群的有限完备化、它们与数论的联系以及图的扩张族的研究。PI还将探索其他离散群,如其他李群和映射类群中的格。三维流形局部类似于我们生活的空间,理解这些对象一直是过去30年来研究的中心主题之一。这些物体的重要性远远超出了它们的内在兴趣,因为它们的研究与数学物理、数学生物学和计算机科学有关。各种代数对象可以与三维流形相关联,其中一个(组)捕捉流形及其相关的其他流形的对称性。该提案的大部分内容都是为了探索这些群体的性质。例如,PI将探索它们与所谓的“扩展图”家族的联系。这些图在计算机科学中广为人知,因为它们在构建高效网络方面很重要。此外,另一个项目将弹性几何的现代数学世界与一个可以追溯到古埃及人的初等数论问题联系起来。通过所建议的技术来解决这个老问题将是非常有趣的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Reid其他文献

High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome
疑似急性冠状动脉综合征患者就诊时的高敏心肌肌钙蛋白 I
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anoop S. V. Shah;A. Anand;Y. Sandoval;K. K. Lee;Stephen W. Smith;P. Adamson;A. Chapman;Timothy Langdon;D. Sandeman;Amar Vaswani;F. Strachan;A. Ferry;A. Stirzaker;Alan Reid;A. Gray;P. Collinson;D. McAllister;F. Apple;D. Newby;N. Mills
  • 通讯作者:
    N. Mills
High-Sensitivity Cardiac Troponin on Presentation to Rule Out Myocardial Infarction
高敏心肌肌钙蛋白检查可排除心肌梗塞
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Relational Symmetries of Disaster Resilience Explored Through the Sendai Framework’s Guiding Principles
通过仙台框架的指导原则探讨灾害恢复力的关系对称性
High-sensitivity cardiac troponin on presentation to rule out myocardial infarction: a stepped-wedge cluster randomised controlled trial
高敏心肌肌钙蛋白可排除心肌梗死:阶梯楔形集群随机对照试验
  • DOI:
    10.1101/2020.09.06.20189308
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Anand;K. K. Lee;A. Chapman;A. Ferry;P. Adamson;F. Strachan;C. Berry;I. Findlay;A. Cruikshank;Alan Reid;P. Collinson;F. Apple;D. McAllister;D. Maguire;K. Fox;D. Newby;C. Tuck;R. Harkess;C. Keerie;C. Weir;R. Parker;A. Gray;Anoop S. V. Shah;N. Mills
  • 通讯作者:
    N. Mills
Renewing the public and the role of research in education

Alan Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Reid', 18)}}的其他基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Representations and Rigidity
表述和刚性
  • 批准号:
    1812397
  • 财政年份:
    2018
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1755177
  • 财政年份:
    2017
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Geometric Group Theory and Low-Dimensional Topology: Recent Connections and Advances
几何群论和低维拓扑:最新联系和进展
  • 批准号:
    1624301
  • 财政年份:
    2016
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Workshop on mapping class groups of surfaces and outer automorphism groups of free groups
曲面类群映射和自由群外自同构群研讨会
  • 批准号:
    1542752
  • 财政年份:
    2015
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
FRG: Collaboration Research: Super Approximation and Thin Groups with Application to Geometry, Groups and Number Theory
FRG:合作研究:超逼近和薄群在几何、群和数论中的应用
  • 批准号:
    1463740
  • 财政年份:
    2015
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Moduli spaces, Extremality and Global Invariants
模空间、极值和全局不变量
  • 批准号:
    1305448
  • 财政年份:
    2013
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Interactions between the geometry of Banach spaces and other areas
Banach 空间的几何形状与其他区域之间的相互作用
  • 批准号:
    0968813
  • 财政年份:
    2010
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Finite covers of hyperbolic 3-manifolds
双曲3流形的有限覆盖
  • 批准号:
    0805828
  • 财政年份:
    2008
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
EMSW21-RTG-Program in low-dimensional topology and its applications
低维拓扑中的EMSW21-RTG-程序及其应用
  • 批准号:
    0636643
  • 财政年份:
    2007
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

Bergman空间上的Toeplitz算子及Hankel算子的性质
  • 批准号:
    11126061
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
分形上的分析及其应用
  • 批准号:
    10471150
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
  • 批准号:
    2240136
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Hyperkähler Manifolds, Moduli Spaces, and Fano Varieties
Hyperkühler 流形、模空间和 Fano 簇
  • 批准号:
    2200800
  • 财政年份:
    2022
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
  • 批准号:
    RGPIN-2018-04379
  • 财政年份:
    2022
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Discovery Grants Program - Individual
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
  • 批准号:
    RGPIN-2018-04379
  • 财政年份:
    2021
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric analysis and comparison geometry on weighted manifolds
加权流形上的几何分析和比较几何
  • 批准号:
    20J11328
  • 财政年份:
    2020
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Group Actions on Manifolds and Related Spaces: Regularity, Structure, and Complexity
流形及相关空间的群作用:规则性、结构和复杂性
  • 批准号:
    2002596
  • 财政年份:
    2020
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
  • 批准号:
    RGPIN-2018-04379
  • 财政年份:
    2020
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Locally Homogeneous Geometric Manifolds and Their Moduli Spaces
职业:局部齐次几何流形及其模空间
  • 批准号:
    1945493
  • 财政年份:
    2020
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了