Dynamics and Kinetics

动力学和动力学

基本信息

  • 批准号:
    0140165
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-15 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

PI: Leonid BunimovichProposal Number: 0140165 ABSTRACTThe proposed research deals with the studies of finite- andinfinite-dimensional dynamical systems as well as of somehybrid (intermediate between dynamical and stochastic) systems.The class of hybrid systems which will be specifically addressedis formed by deterministic walks in random environments. It has been shownrecently that a large subclass of such systems (walksin rigid environments) is completely solvable in 1D. The proposedstudy deals with the case of environments with variable rigidity.Another part of the proposal deals with the farther development ofrecently constructed first natural examples of Hamiltonian systemswith divided phase space. The goal now is to show that a rather general class of such billiards has positive metric entropy in any (finite) dimension. The considered problems of statistical mechanics deal with the rigorous derivation of formulas for kinetic coefficients and for escape rate in open systems. Among the problems which deal with infinite-dymensional systems are chaos-order transitions in Lattice Dynamical Systems and chaos in nonlinear wave equations. Other problems deal with various systems ranging from the Ergodic Theory (Benford's law)to some simple models of brain dynamics and logistics. Traditionally the mathematical models of real systems are either purely deterministic or purely stochastic. These two classes of models enjoy having a rich theory, and researchers have quite good intuition on their behavior, i.e. they basically know what to expect. This intuition is essentially based on a rich collection of completely solvable (i.e. completely understood) models. However, a majority of real systems are neither purely deterministic nor purely stochastic. Instead they have both (deterministic and stochastic) features. This project deals with a big class of such models which were independently introduced in communication theory, statistical physics,chemical kinetics, theory of artificiall intellect, etc.
摘要提出的研究涉及有限维和无限维动力系统以及一些混合(介于动力和随机之间)系统的研究。将特别讨论的混合系统是由随机环境中的确定性行走形成的。最近已经证明,这类系统的一个大子类(在刚性环境中行走)在一维中是完全可解的。本文研究的是变刚度环境的情况。该建议的另一部分涉及最近构造的具有分相空间的哈密顿系统的第一个自然例子的进一步发展。现在的目标是证明在任何(有限)维度上,一类相当一般的台球都具有正的度量熵。统计力学考虑的问题涉及开放系统中动力学系数和逃逸率公式的严格推导。在处理无穷维系统的问题中有晶格动力系统的混沌阶跃迁和非线性波动方程的混沌。其他问题涉及各种系统,从遍历理论(本福德定律)到大脑动力学和物流的一些简单模型。传统上,真实系统的数学模型要么是纯确定性的,要么是纯随机的。这两类模型都有丰富的理论,研究人员对它们的行为有很好的直觉,也就是说,他们基本上知道会发生什么。这种直觉本质上是基于一个丰富的完全可解决(即完全理解)的模型集合。然而,大多数真实系统既不是纯确定性的,也不是纯随机的。相反,它们同时具有(确定性和随机性)特征。本项目涉及一大类此类模型,这些模型是在通信理论、统计物理、化学动力学、人工智能理论等领域独立引入的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Bunimovich其他文献

Antigenic Cooperation in Viral Populations: Redistribution of Loads Among Altruistic Viruses and Maximal Load per Altruist
病毒群体中的抗原合作:利他病毒之间负荷的重新分配和每个利他病毒的最大负荷
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leonid Bunimovich;Athulya Ram
  • 通讯作者:
    Athulya Ram

Leonid Bunimovich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Bunimovich', 18)}}的其他基金

Dynamics and Kinetics
动力学和动力学
  • 批准号:
    2054659
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Dynamics and Kinetics
动力学和动力学
  • 批准号:
    1600568
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CCF-BSF: AF: Small: Collaborative Research: Algorithmic Techniques for Inferring Transmission Networks from Noisy Sequencing Data
CCF-BSF:AF:小型:协作研究:从噪声排序数据推断传输网络的算法技术
  • 批准号:
    1615407
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Dynamics and Kinetics
动力学和动力学
  • 批准号:
    1265883
  • 财政年份:
    2013
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
BECS: Collaborative Research: Dynamical Networks and Collective Synchronization of Coupled Lasers
BECS:协作研究:动态网络和耦合激光器的集体同步
  • 批准号:
    1024868
  • 财政年份:
    2010
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Dynamics and Kinetics
动力学和动力学
  • 批准号:
    0900945
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Dynamics and Kinetics
动力学和动力学
  • 批准号:
    9970215
  • 财政年份:
    1999
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics and Kinetics of Spatially Extended Systems
数学科学:空间扩展系统的动力学和动力学
  • 批准号:
    9530637
  • 财政年份:
    1996
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Space-Time and Transport Phenomena inExtended Systems
数学科学:扩展系统中的时空和输运现象
  • 批准号:
    9303769
  • 财政年份:
    1993
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
  • 批准号:
    51078108
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
  • 批准号:
    2336506
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
New Tools and Applications for Kinetics and Dynamics with Broadband Rotational Spectroscopy
宽带旋转光谱动力学和动力学的新工具和应用
  • 批准号:
    2247776
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Patient-specific thrombosis risk in atrial fibrillation by 4D CT imaging of atrial kinetics combined with computational fluid dynamics
通过心房动力学 4D CT 成像结合计算流体动力学研究心房颤动患者特异性血栓形成风险
  • 批准号:
    10687837
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
RUI: A variational enhanced sampling approach to enzyme kinetics and protein dynamics in condensed phases
RUI:凝聚相酶动力学和蛋白质动力学的变分增强采样方法
  • 批准号:
    2102189
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
UNRAVELLING THE DYNAMICS AND CHEMICAL KINETICS OF NON-EQUILIBRIUM, MIXED-GAS HYDROGEN PLASMAS
揭示非平衡混合气体氢等离子体的动力学和化学动力学
  • 批准号:
    2609786
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
Dynamics and Kinetics
动力学和动力学
  • 批准号:
    2054659
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Patient-specific thrombosis risk in atrial fibrillation by 4D CT imaging of atrial kinetics combined with computational fluid dynamics
通过心房动力学 4D CT 成像结合计算流体动力学研究心房颤动患者特异性血栓形成风险
  • 批准号:
    10317985
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
GEM: Magnetosheath Transport from Local Kinetics to Global Dynamics
GEM:从局部动力学到全局动力学的磁鞘传输
  • 批准号:
    2033563
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Theoretical Development for Chemical Reaction Dynamics and Kinetics in Molecular Systems with Heterogeneous and Dynamical Fluctuations
具有非均相和动态涨落的分子系统中化学反应动力学和动力学的理论发展
  • 批准号:
    19J01569
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mid-Infrared Frequency Comb Lasers for Chemical Kinetics: Applying Physics Technologies to Kinetics, Dynamics, and Molecular Spectroscopy
用于化学动力学的中红外频率梳状激光器:将物理技术应用于动力学、动力学和分子光谱学
  • 批准号:
    EP/R01518X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了