Dynamics and Kinetics
动力学和动力学
基本信息
- 批准号:2054659
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A deterministic system, such as a double pendulum, can exhibit chaotic or unpredictable behavior. The principal investigator will study the finite time evolution of chaotic deterministic systems. Traditionally it was assumed that the subtle dynamics of such systems can be analyzed only in the limit when time tends to infinity (that is to say when chaotic fluctuations settle down). This project aims to extend previous studies of finite time evolution of such systems to a much larger class of systems, which will include some models with practical applications. Another part of this research deals with systems where the motion of a point particle is substituted by a particle of nonzero size. The study of such systems has led to some new findings in quantum chaos and new interpretations of experimental data. The research will extend this theory to dimensions greater than two, which would allow application to interpretations of a much larger class of numerical and experimental data on physical systems. A third topic of the research deals with understanding whether and how probabilistic time-irreversible laws of statistical mechanics could be rigorously derived from deterministic time-reversible laws of classical mechanics. The project includes the training of graduate students. A rigorous theory of finite time dynamics makes possible the analysis of transport in the phase space of chaotic and random dynamical systems. Namely, it allows the prediction of which events will likely occur first, e. g., which subset of the phase space the orbits will more likely visit. Thus far, this theory has been developed for Bernoulli shifts with equal probabilities of states. Similar results will be proved for Bernoulli shifts with non-equal probabilities and for Markov shifts. The principles for constructing chaotic (hyperbolic) particle-like flows will be reconsidered, and new ones will be created. Physical particles where a finite size hard sphere moves instead of a point particle will be analyzed in dimensions higher than two. A simple model with two discs localized in "cells" but allowed to collide with each other and with two pistons will be studied. In the model, each cell is connected to (bounded by) a thermostat, the thermostats have different temperatures, and the pistons do not allow the discs to stop for a long time or move very slowly for a long time. A goal is to prove that on average (in time) the disc in a cell with a higher temperature thermostat will have a higher energy. This will be a main step to a proof of the Fourier law.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
确定性系统,如双摆,可能会表现出混沌或不可预测的行为。主要研究人员将研究混沌确定性系统的有限时间演化。传统上认为,只有当时间趋于无穷大时(即当混沌波动稳定下来时),才能分析这类系统的微妙动力学。该项目旨在将以前对这类系统的有限时间演化的研究扩展到更大的系统类别,其中将包括一些具有实际应用的模型。这项研究的另一部分涉及这样的系统,其中点粒子的运动被非零大小的粒子代替。对这类系统的研究导致了量子混沌的一些新发现,并对实验数据做出了新的解释。这项研究将把这一理论扩展到二维以上,这将允许应用于对物理系统上更大类别的数值和实验数据的解释。这项研究的第三个主题涉及理解统计力学的概率时间不可逆定律是否以及如何严格地从经典力学的确定性时间可逆定律推导出来。该项目包括研究生的培训。严格的有限时间动力学理论使混沌和随机动力系统的相空间输运分析成为可能。也就是说,它允许预测哪些事件可能首先发生,例如,轨道更有可能访问相空间的哪个子集。到目前为止,这一理论已经发展为状态概率相等的伯努利移位。类似的结果将被证明为具有不等概率的伯努利移位和马尔可夫移位。构建混沌(双曲)粒子流的原则将被重新考虑,并将创造新的原则。当有限大小的硬球运动而不是点粒子时,将分析维度大于2的物理粒子。我们将研究一个简单的模型,其中两个圆盘定位在“细胞”中,但允许相互碰撞,并带有两个活塞。在该模型中,每个电池都连接到恒温器(由恒温器约束),恒温器具有不同的温度,活塞不允许圆盘长时间停止或长时间非常缓慢地移动。一个目标是证明,平均(在时间上),温度更高的电池中的圆盘将具有更高的能量。这将是证明傅里叶定律的主要一步。这一裁决反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collision of a hard ball with singular points of the boundary Cite as: Chaos 31, 013123 (2021); https://doi.org/10.1063/5.0024502
硬球与边界奇点的碰撞引用为:Chaos 31, 013123 (2021);
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Attarchi H., Bunimovich L.
- 通讯作者:Attarchi H., Bunimovich L.
Local Immunodeficiency: Combining Cross-Immunoreactivity Networks
局部免疫缺陷:结合交叉免疫反应网络
- DOI:10.1089/cmb.2022.0390
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Bunimovich, Leonid;Ram, Athulya
- 通讯作者:Ram, Athulya
Chaos and Geometrical Optics
混沌与几何光学
- DOI:10.1007/s11141-022-10171-6
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Bunimovich, L. A.
- 通讯作者:Bunimovich, L. A.
Poisson Approximations and Convergence Rates for Hyperbolic Dynamical Systems
双曲动力系统的泊松近似和收敛率
- DOI:10.1007/s00220-022-04309-w
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Su, Yaofeng;Bunimovich, Leonid A.
- 通讯作者:Bunimovich, Leonid A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Bunimovich其他文献
Antigenic Cooperation in Viral Populations: Redistribution of Loads Among Altruistic Viruses and Maximal Load per Altruist
病毒群体中的抗原合作:利他病毒之间负荷的重新分配和每个利他病毒的最大负荷
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Leonid Bunimovich;Athulya Ram - 通讯作者:
Athulya Ram
Leonid Bunimovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Bunimovich', 18)}}的其他基金
CCF-BSF: AF: Small: Collaborative Research: Algorithmic Techniques for Inferring Transmission Networks from Noisy Sequencing Data
CCF-BSF:AF:小型:协作研究:从噪声排序数据推断传输网络的算法技术
- 批准号:
1615407 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BECS: Collaborative Research: Dynamical Networks and Collective Synchronization of Coupled Lasers
BECS:协作研究:动态网络和耦合激光器的集体同步
- 批准号:
1024868 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamics and Kinetics of Spatially Extended Systems
数学科学:空间扩展系统的动力学和动力学
- 批准号:
9530637 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Mathematical Sciences: Space-Time and Transport Phenomena inExtended Systems
数学科学:扩展系统中的时空和输运现象
- 批准号:
9303769 - 财政年份:1993
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
- 批准号:
2336506 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
New Tools and Applications for Kinetics and Dynamics with Broadband Rotational Spectroscopy
宽带旋转光谱动力学和动力学的新工具和应用
- 批准号:
2247776 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Patient-specific thrombosis risk in atrial fibrillation by 4D CT imaging of atrial kinetics combined with computational fluid dynamics
通过心房动力学 4D CT 成像结合计算流体动力学研究心房颤动患者特异性血栓形成风险
- 批准号:
10687837 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
RUI: A variational enhanced sampling approach to enzyme kinetics and protein dynamics in condensed phases
RUI:凝聚相酶动力学和蛋白质动力学的变分增强采样方法
- 批准号:
2102189 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
UNRAVELLING THE DYNAMICS AND CHEMICAL KINETICS OF NON-EQUILIBRIUM, MIXED-GAS HYDROGEN PLASMAS
揭示非平衡混合气体氢等离子体的动力学和化学动力学
- 批准号:
2609786 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Patient-specific thrombosis risk in atrial fibrillation by 4D CT imaging of atrial kinetics combined with computational fluid dynamics
通过心房动力学 4D CT 成像结合计算流体动力学研究心房颤动患者特异性血栓形成风险
- 批准号:
10317985 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
GEM: Magnetosheath Transport from Local Kinetics to Global Dynamics
GEM:从局部动力学到全局动力学的磁鞘传输
- 批准号:
2033563 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Theoretical Development for Chemical Reaction Dynamics and Kinetics in Molecular Systems with Heterogeneous and Dynamical Fluctuations
具有非均相和动态涨落的分子系统中化学反应动力学和动力学的理论发展
- 批准号:
19J01569 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mid-Infrared Frequency Comb Lasers for Chemical Kinetics: Applying Physics Technologies to Kinetics, Dynamics, and Molecular Spectroscopy
用于化学动力学的中红外频率梳状激光器:将物理技术应用于动力学、动力学和分子光谱学
- 批准号:
EP/R01518X/1 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Ignition and Transition to Detonation - Interplay between Gas Dynamics and Chemical Kinetics
点火和爆炸过渡 - 气体动力学和化学动力学之间的相互作用
- 批准号:
RGPIN-2014-04452 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




