Cohomology Theories for Algebraic Varieties

代数簇的上同调理论

基本信息

  • 批准号:
    0140445
  • 负责人:
  • 金额:
    $ 13.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

The investigator studies the theory of algebraic cobordism, recently constructed by the investigor and F. Morel, as well as generalized cohomology theories for algebraic varieties and schemes, the relation of rational equivalence in the Morel-Voevodsky algebraic-homotopy category, and a refinement of Asakura's arithmetic Hodge cohomology. The investigator attempts to construct a theory of higher algebraic cobordism, along the lines of Bloch's higher Chow groups, examines the category of cobordism motives, and tries to give a theory of algebraic higher elliptic genera. In addition, the investigator examines the generalization of the motivic cohomology to K-theoryspectral sequence to other cohomology theories on algebraic varieties, and considers the relationship of this spectral sequence to the slice spectral sequence of Voevodsky, using the notion of rational equivalence in the algebraic homotopy category. Finally the investigator defines a variation of Asakura's arithmetic Hodge cohomology and uses this to construct an infinitesequence of cohomology theories which conjecturely give a better and better approximation to motivic cohomology.The investigator's research involves a mixture of algebraic geometry and algebraic topology. Algebraic geometry is the study of solutions of equations using both algebra and geometry. For example, one can study a circle by examining its equation, or by looking at its geometric properties. Algebraic topology studies spaces by attaching algebraic invariants to them, invariants which can often be computed explicitly. The investigator takes methods and constructions in algebraic topology, and then modifies and refines them so that they can be used to define algebraic versions of the topological invariants. These new algebraic invariants are then applicable for studying subtle properties of solutions of equations.
研究者研究了最近由Elderor和F. Morel,以及代数簇和计划的广义上同调理论,Morel-Voevodsky代数同伦范畴中的有理等价关系,以及Asakura算术Hodge上同调的改进。研究者试图构造一个高级代数协边理论,沿着Bloch的高级Chow群的路线,考察协边动机的范畴,并试图给出一个代数高级椭圆型的理论。此外,调查员检查的推广motivic上同调的K-theory谱序列的其他上同调理论代数簇,并考虑这种谱序列的关系,切片谱序列Voevodsky,使用的概念,合理的等价代数同伦范畴。最后,研究者定义了Asakura算术Hodge上同调的一个变体,并利用它构造了一个无穷序列的上同调理论,这些上同调理论逐渐给出了对motivic上同调的一个越来越好的逼近。代数几何学是用代数学和几何学来研究方程的解的学科。例如,人们可以通过检查圆的方程或观察其几何性质来研究圆。代数拓扑学通过将代数不变量附加到空间来研究空间,这些不变量通常可以显式计算。 调查人员采取的方法和结构在代数拓扑,然后修改和完善它们,使它们可以用来定义代数版本的拓扑不变量。这些新的代数不变量,然后适用于研究微妙的性质方程的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Levine其他文献

Evaluation of patients undergoing Senning repair with two-dimensional contrast echocardiography
  • DOI:
    10.1007/bf02424959
  • 发表时间:
    1984-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Marc Levine;Susan Roberts;James R. Hennessy;J. Terrance Davis;Robert Ehrlich
  • 通讯作者:
    Robert Ehrlich
Algebraic cobordism revisited
重温代数协边主义
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marc Levine;R. Pandharipande
  • 通讯作者:
    R. Pandharipande
A comparison of regularly dosed oral morphine and on-demand intramuscular morphine in the treatment of postsurgical pain
Therapeutic Drug Monitoring of Phenytoin Rationale and Current Status
  • DOI:
    10.2165/00003088-199019050-00001
  • 发表时间:
    1990-11-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Marc Levine;Tom Chang
  • 通讯作者:
    Tom Chang
Cobordisme algébrique I
代数坐标 I

Marc Levine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Levine', 18)}}的其他基金

Algebraic Homotopy Theory and Algebraic Cycles
代数同伦理论和代数圈
  • 批准号:
    0457195
  • 财政年份:
    2005
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Continuing Grant
K-Theory and Motivic Cohomology
K 理论和动机上同调
  • 批准号:
    9876729
  • 财政年份:
    1999
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
K-Theory and Motivic Cohomology
K 理论和动机上同调
  • 批准号:
    9700881
  • 财政年份:
    1997
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: K-Theory & Motivic Cohomology
数学科学:K 理论
  • 批准号:
    9401164
  • 财政年份:
    1994
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Research in K-Theory
数学科学:K 理论研究
  • 批准号:
    9104661
  • 财政年份:
    1991
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Continuing grant
Mathematical Sciences: K-Theory of Fields
数学科学:K-场论
  • 批准号:
    8904837
  • 财政年份:
    1989
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: K-Theory
数学科学:K 理论
  • 批准号:
    8711359
  • 财政年份:
    1987
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Classification and Deformation of Complex Manifolds
数学科学:复流形的分类和变形
  • 批准号:
    8301327
  • 财政年份:
    1983
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Continuing grant

相似海外基金

Cohomology theories for algebraic varieties
代数簇的上同调理论
  • 批准号:
    2883661
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Operator-algebraic construction of integrable field theories
可积场论的算子代数构造
  • 批准号:
    2440735
  • 财政年份:
    2020
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Algebraic and decision-theoretic ways into quantum resource theories
量子资源理论的代数和决策理论方法
  • 批准号:
    20K03746
  • 财政年份:
    2020
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A mathematical study of dimensionality reduction and embedding by theories of delay-coordinate systems and algebraic geometry
延迟坐标系和代数几何理论降维和嵌入的数学研究
  • 批准号:
    20K03747
  • 财政年份:
    2020
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic Properties of Superconformal Field Theories
超共形场论的代数性质
  • 批准号:
    2272671
  • 财政年份:
    2019
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Algebraic structures in integrable field theories
可积场论中的代数结构
  • 批准号:
    2103083
  • 财政年份:
    2018
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Algebraic Description of dualities in gauge/string theories and applications to solvable statistical models
规范/弦理论中对偶性的代数描述及其在可解统计模型中的应用
  • 批准号:
    18K03610
  • 财政年份:
    2018
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects and algebraic theories.
效应和代数理论。
  • 批准号:
    2054731
  • 财政年份:
    2018
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Generalized cohomology theories and applications to algebraic and arithmetic geometry (A07)
广义上同调理论及其在代数和算术几何中的应用(A07)
  • 批准号:
    260662670
  • 财政年份:
    2014
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Collaborative Research Centres
ALGEBRAIC MODELS OF HOMOTOPY THEORIES AND HOMOTOPICAL MODELS OF ALGEBRA
同伦理论的代数模型和代数的同伦模型
  • 批准号:
    1104396
  • 财政年份:
    2011
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了