Algebraic Homotopy Theory and Algebraic Cycles
代数同伦理论和代数圈
基本信息
- 批准号:0457195
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The construction by Morel-Voevodsky of A^1-homotopy theory has enabled the systematic study of homotopy theory in the setting of algebraic geometry, as well as the application of techniques and approaches of homotopy theory to basic problems in algebraic geometry. We plan to pursue a research program in both aspects of this new theory: to continue our investigation of the basic structural issues of A1-homotopy theory and to use the new viewpoint introduced by this theory to shed light on basic problems in algebraic geometry, especially in the theory of algebraic cycles. Specific projects include:1. Understanding Voevodsky's slice tower for naturally occuring cohomology theories, and constructing interesting cycle theories from these cohomology theories. These include non-oriented cycles arising from KO-theory, and an algebraic Bredon theory, arising from the K-theory of equivariant bundles.2. Constructions of limit motives and limit motivic cohomology, with applications to actions of the Galois group of Q on geometric fundamental groups, and the study of periods of mixed Tate motives.3. Using the algebraic cobordism of the moduli space of n-pointed genus zero curves to give interesting deformations of tensor categories.4. Giving an algebraic setting for the study of stable phenomena in the moduli of smooth curves.Creating analogies between the seemingly unrelated fields of algebra and topology has often been a fruitful approach to solving difficult problems in both fields. Recently, Morel and Voevodsky have transferred an entire branch of topology, called stable homotopy theory, to the algebraic setting, making ideas from stable homotopy theory applicable to problems in algebra and number theory. My research is an attempt to take a number of specific constructions from stable homotopy theory and adapt them to this new setting. In addition, I plan to make specific computations to determine what these new constructions yield when applied to familiar algebraic objects. Finally, I hope to answer basic questions in Galois theory and to explain why certain special numbers, the so-called multiple zeta values, always turn up when one evaluates the integrals known as periods of mixed Tate motives over the integers.
Morel-Voevodsky对A^1-同伦理论的建立,使得在代数几何的背景下系统地研究了同伦理论,并将同伦理论的技术和方法应用于代数几何的基本问题。我们计划在这一新理论的两个方面进行研究:继续研究a1 -同伦理论的基本结构问题,并利用该理论引入的新观点来阐明代数几何中的基本问题,特别是代数循环理论中的基本问题。具体项目包括:1;理解Voevodsky对自然上同调理论的切片塔,并从这些上同调理论构造有趣的循环理论。这包括由ko理论产生的无取向环,以及由等变束的k理论产生的代数Bredon理论。2 .极限动机和极限动机上同调的构造及其在几何基本群上的伽罗瓦群作用的应用,以及混合塔特动机周期的研究。利用n点属零曲线模空间的代数协坐标给出张量范畴的有趣变形。给出了研究光滑曲线模中稳定现象的一个代数集。在代数和拓扑学这两个看似无关的领域之间建立类比,往往是解决这两个领域难题的有效方法。最近,Morel和Voevodsky将拓扑学的一个分支——稳定同伦理论——转移到代数集合中,使稳定同伦理论的思想适用于代数和数论问题。我的研究是尝试从稳定同伦理论中提取一些特定的结构,并使它们适应这个新的环境。此外,我计划进行具体的计算,以确定这些新结构在应用于熟悉的代数对象时产生的结果。最后,我希望回答伽罗瓦理论中的基本问题,并解释为什么在计算整数上的混合泰特动机周期积分时,总是会出现某些特殊的数字,即所谓的多重泽塔值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Levine其他文献
Evaluation of patients undergoing Senning repair with two-dimensional contrast echocardiography
- DOI:
10.1007/bf02424959 - 发表时间:
1984-04-01 - 期刊:
- 影响因子:1.400
- 作者:
Marc Levine;Susan Roberts;James R. Hennessy;J. Terrance Davis;Robert Ehrlich - 通讯作者:
Robert Ehrlich
Algebraic cobordism revisited
重温代数协边主义
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Marc Levine;R. Pandharipande - 通讯作者:
R. Pandharipande
A comparison of regularly dosed oral morphine and on-demand intramuscular morphine in the treatment of postsurgical pain
- DOI:
10.1007/bf03009251 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:3.300
- 作者:
James P. McCormack;C. Brian Warriner;Marc Levine;Ned Glick - 通讯作者:
Ned Glick
Therapeutic Drug Monitoring of Phenytoin Rationale and Current Status
- DOI:
10.2165/00003088-199019050-00001 - 发表时间:
1990-11-01 - 期刊:
- 影响因子:4.000
- 作者:
Marc Levine;Tom Chang - 通讯作者:
Tom Chang
Cobordisme algébrique I
代数坐标 I
- DOI:
10.1016/s0764-4442(01)01832-8 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Marc Levine;F. Morel - 通讯作者:
F. Morel
Marc Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Levine', 18)}}的其他基金
Cohomology Theories for Algebraic Varieties
代数簇的上同调理论
- 批准号:
0140445 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: K-Theory & Motivic Cohomology
数学科学:K 理论
- 批准号:
9401164 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Research in K-Theory
数学科学:K 理论研究
- 批准号:
9104661 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Classification and Deformation of Complex Manifolds
数学科学:复流形的分类和变形
- 批准号:
8301327 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Continuing grant
相似海外基金
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
- 批准号:
2348963 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
- 批准号:
2304719 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Homotopy Algebraic Quantum Field Theory From Functorial Quantum Field Theory
来自函子量子场论的同伦代数量子场论
- 批准号:
568634-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
- 批准号:
22K14038 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Homotopy coherent structures in algebraic quantum field theory
代数量子场论中的同伦相干结构
- 批准号:
2742043 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104348 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104420 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Analyzing algebraic varieties from the point of view of motivic homotopy theory
从动机同伦论的角度分析代数簇
- 批准号:
2101898 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




