Fully Nonlinear and Higher Order Equations in Geometry

几何中的完全非线性和高阶方程

基本信息

  • 批准号:
    0200646
  • 负责人:
  • 金额:
    $ 10.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

PI: Matthew Gursky, Notre Dame UniversityDMS-0200646%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Fully nonlinear and higher order equations in geometryAbstract. The work described in this proposal lies at the intersection of three fields: higher order elliptic partialdifferential equations, fully nonlinear equations, and differential geometry. The equations we study are geometricin origin, and given by elementary symmetric polynomials of the eigenvalues of the Weyl-Schouten tensor, specificallyunder conformal deformations of the metric. There is astrong structural analogy between this problem and the moreclassical problem of prescribing the curvature(s) of a surface in three-dimensional space. To analyze our equationswe use techniques from the field of fully nonlinear and higher order elliptic equations. The geometric consequencesare most interesting in low dimensions: for example, wehave developed a technique for constructing large families of conformal manifolds which admit metrics with positiveRicci curvature,The interaction of geometry and analysis dates backto at least the eighteenth century, and yet continues to bean important and highly active field of mathematical research.The classical subject of geometry grew out of our desire tounderstand certain properties of the physical world, anddifferential geometry was developed to understand the geometry of curved spaces--for example, the curvatureof the surface of the earth, or the curvature of space by matter predicted by general relativity. In the same way that Descartes realized that planegeometry can be studied using algebra, so differentialgeometry can be studied using techniques from analysis,especially differential equations. This research in thisproposal involves several such problems from Riemmanianand conformal geometry, whose analysis requires techniquesfrom various fields within mathematical analysis.
PI:马修•古尔斯基圣母universitydms - 0200646 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 在geometryAbstract完全非线性和高阶方程。本提案中所描述的工作涉及三个领域的交叉:高阶椭圆偏微分方程、全非线性方程和微分几何。我们研究的方程是几何起源的,由Weyl-Schouten张量的特征值的初等对称多项式给出,特别是在度规的共形变形下。这个问题与更经典的在三维空间中规定曲面曲率的问题在结构上有很强的相似性。为了分析我们的方程,我们使用了全非线性和高阶椭圆方程领域的技术。几何结果在低维中是最有趣的:例如,我们已经开发了一种构造大族共形流形的技术,这些流形允许具有正维曲率的度量。几何和分析的相互作用至少可以追溯到18世纪,并且仍然是数学研究的重要和高度活跃的领域。经典的几何学科源于我们想要了解物理世界的某些特性的愿望,而微分几何的发展是为了理解弯曲空间的几何——例如,地球表面的曲率,或者广义相对论所预测的物质对空间的曲率。就像笛卡尔意识到平面几何可以用代数来研究一样,微分几何也可以用分析的方法来研究,尤其是微分方程。本提案中的研究涉及黎曼几何和共形几何中的几个此类问题,其分析需要数学分析中各个领域的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Gursky其他文献

Matthew Gursky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Gursky', 18)}}的其他基金

Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    2105460
  • 财政年份:
    2021
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    1811034
  • 财政年份:
    2018
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Nonlinear Analysis in Rome
罗马的非线性分析
  • 批准号:
    1700379
  • 财政年份:
    2017
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
  • 批准号:
    1509633
  • 财政年份:
    2015
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Center for Mathematics at Notre Dame, June 2-6, 2014
巴黎圣母院数学中心,2014 年 6 月 2-6 日
  • 批准号:
    1419147
  • 财政年份:
    2014
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Continuing Grant
IHP: Program in Conformal and Kahler Geometry
IHP:共形和卡勒几何项目
  • 批准号:
    1205937
  • 财政年份:
    2012
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
  • 批准号:
    1206661
  • 财政年份:
    2012
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Conference in Nonlinear Geometric Analysis
非线性几何分析会议
  • 批准号:
    0841068
  • 财政年份:
    2008
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Variational problems and nonlinear equations from geometry
几何变分问题和非线性方程
  • 批准号:
    0800084
  • 财政年份:
    2008
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Fully Nonlinear and Higher Order Equations in Geometry
几何中的完全非线性和高阶方程
  • 批准号:
    0500538
  • 财政年份:
    2005
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant

相似海外基金

Smart Damage Assessment Tool of Suspension and Cable-Stayed Bridges Through Analysis of Nonlinear Characteristics of the Structural Properties and Energy Cascading to Higher Frequencies
通过分析结构特性的非线性特性和更高频率的能量级联,实现悬索桥和斜拉桥的智能损伤评估工具
  • 批准号:
    575709-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
解开非线性色散和耗散偏微分方程解的高阶临界结构
  • 批准号:
    19H00638
  • 财政年份:
    2019
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Modelling and mathematical analysis of geometrically nonlinear Cosserat shells with higher order and residual effects
具有高阶和残差效应的几何非线性 Cosserat 壳的建模和数学分析
  • 批准号:
    415894848
  • 财政年份:
    2018
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Research Grants
CAREER: Higher-Order Methods for Nonlinear Stochastic Structural Dynamics
职业:非线性随机结构动力学的高阶方法
  • 批准号:
    1652044
  • 财政年份:
    2017
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
All-optical and coherent signal processing employing higher order nonlinear effects in aperiodically poled lithium niobate devices
在非周期极化铌酸锂器件中采用高阶非线性效应的全光和相干信号处理
  • 批准号:
    15K06085
  • 财政年份:
    2015
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Crystallization monitoring using higher order nonlinear Raman scattering microscopy
使用高阶非线性拉曼散射显微镜监测结晶
  • 批准号:
    25286070
  • 财政年份:
    2013
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra-fast and extra-broadband all-optical high-functional signal processing using higher order nonlinear effect in aperiodic quasi-phase matching devices
利用非周期准相位匹配器件中的高阶非线性效应进行超快超宽带全光高性能信号处理
  • 批准号:
    23760347
  • 财政年份:
    2011
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nonlinear ion transport in glass-forming ionic liquids: Higher harmonic ac currents and electrical creep
玻璃形成离子液体中的非线性离子传输:高次谐波交流电流和电蠕变
  • 批准号:
    173396901
  • 财政年份:
    2010
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Research Units
Fully Nonlinear and Higher Order Equations in Geometry
几何中的完全非线性和高阶方程
  • 批准号:
    0500538
  • 财政年份:
    2005
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Standard Grant
Boundary value problems for higher-order nonlinear ordinary differential equations
高阶非线性常微分方程的边值问题
  • 批准号:
    15340048
  • 财政年份:
    2003
  • 资助金额:
    $ 10.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了