Geometry of Rationally Connected Varieties

有理连接品种的几何

基本信息

  • 批准号:
    0200659
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2005-12-31
  • 项目状态:
    已结题

项目摘要

Rationally connected varieties form a class of varieties that coincides with rational and unirational varieties for curves and surfaces, but represents a very different (and better behaved) class in higher dimensions. The investigator studies aspects of rational connectivity; in particular, the relation between rational connectivity and unirationality and the implications of rational connectivity for existence of points on varieties over non-algebraically closed fields. In relation to the latter, the investigator studies the geometry of parameter spaces for rational curves on a rationally connected variety.The central goal of algebraic geometry is to learn more about the solutions of polynomial equations by studying geometric objects, called varieties, associated to them. For example, if an ellipse is given to us by a polynomial in two variables, we might ask how the shape of an ellipse affects the solutions of the polynomial. Recently, algebraic geometers have introduced a new property of varieties, called rational connectivity, and results to far indicate a strong connection between the algebra of a system of polynomial equations and the rational connectivity of the variety they define. The investigator studies this connection further.
有理连通的簇形成了一类簇,与曲线和曲面的有理和单有理簇一致,但在更高的维度上代表了一个非常不同的(并且表现更好的)类别。调查研究方面的合理连接,特别是合理的连接和unirationality之间的关系和合理的连接的影响存在的点品种在非代数闭域。关于后者,研究者研究有理连通簇上有理曲线的参数空间的几何。代数几何的中心目标是通过研究与多项式方程相关的几何对象(称为簇)来了解更多关于多项式方程的解。例如,如果一个椭圆是由一个二元多项式给出的,我们可能会问椭圆的形状如何影响多项式的解。最近,代数几何学家引入了一个新的性质的品种,称为合理的连接,结果远远表明之间的强连接代数系统的多项式方程和合理的连接品种,他们定义。研究人员进一步研究了这种联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Harris其他文献

Eighteenth-century theatrical tragedy
十八世纪戏剧悲剧
  • DOI:
    10.1017/chol9780521897860.045
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Harris;W. Burgwinkle;N. Hammond;E. Wilson
  • 通讯作者:
    E. Wilson
Rewriting: How To Do Things With Texts
重写:如何处理文本
  • DOI:
    10.5860/choice.44-4300
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Harris
  • 通讯作者:
    Joseph Harris
Rewriting, Second Edition: How to Do Things with Texts
重写,第二版:如何用文本做事
  • DOI:
    10.7330/9781607326878
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Harris
  • 通讯作者:
    Joseph Harris
On the Stability of Flows Over Rough Rotating Disks
粗糙转盘上流动的稳定性
  • DOI:
    10.2514/6.2012-3075
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Joseph Harris;P. Thomas;S. Garrett
  • 通讯作者:
    S. Garrett
Socio-economics of Personalized Medicine in Asia
亚洲个性化医疗的社会经济学

Joseph Harris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Harris', 18)}}的其他基金

Geometry of Linear Systems on Curves: Birational Geometry of Moduli Spaces
曲线上线性系统的几何:模空间的双有理几何
  • 批准号:
    1001926
  • 财政年份:
    2010
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Geometry of Linear Systems on Curves
曲线上线性系统的几何
  • 批准号:
    0500867
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Factorization of Birational Maps
双有理图因式分解
  • 批准号:
    0070678
  • 财政年份:
    2000
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Scientific Computing Research Environment for the Mathematical Sciences (SCREMS)
数学科学科学计算研究环境 (SCREMS)
  • 批准号:
    9977425
  • 财政年份:
    1999
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Four Pivotal Problems in Classical Algebraic Geometry
经典代数几何的四个关键问题
  • 批准号:
    9900025
  • 财政年份:
    1999
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Families of Curves on Algebraic Surfaces
代数曲面上的曲线族
  • 批准号:
    9626888
  • 财政年份:
    1996
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Geometry
数学科学:代数几何
  • 批准号:
    9016097
  • 财政年份:
    1991
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Geometry
数学科学:代数几何
  • 批准号:
    8896290
  • 财政年份:
    1988
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Geometry
数学科学:代数几何
  • 批准号:
    8711876
  • 财政年份:
    1987
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Design and development of new Lipid Nano Particle delivery systems for new RNA-based c therapeutics: A rationally designed chemistry and microfluidics
设计和开发新型脂质纳米粒子递送系统,用于新型基于 RNA 的 c 疗法:合理设计的化学和微流体
  • 批准号:
    2889386
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    479481
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Operating Grants
Rationally Designed, Target-specific Imaging Probes for Nephro-urology Diagnoses
用于肾泌尿科诊断的合理设计、针对特定目标的成像探头
  • 批准号:
    10659440
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Quantifying the Effects of Disorder and Lateral Interactions on Chemically Modified Carbon Electrodes: Molecular Insights to Rationally Design Electrochemical Performance
量化无序和横向相互作用对化学修饰碳电极的影响:合理设计电化学性能的分子洞察
  • 批准号:
    2305065
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Rationally guided discovery platform for monoclonal antibodies against carbohydrate antigens using virus-like particle conjugate immunization and high throughput selection
使用病毒样颗粒缀合物免疫和高通量选择的合理引导的针对碳水化合物抗原的单克隆抗体的发现平台
  • 批准号:
    10574738
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    472596
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Operating Grants
Incorporating intrinsically disordered regions into rationally designed proteins that target DNA
将本质上无序的区域纳入合理设计的靶向 DNA 的蛋白质中
  • 批准号:
    RGPIN-2020-05854
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    464593
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Operating Grants
Incorporating intrinsically disordered regions into rationally designed proteins that target DNA
将本质上无序的区域纳入合理设计的靶向 DNA 的蛋白质中
  • 批准号:
    RGPIN-2020-05854
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了