Families of Curves on Algebraic Surfaces
代数曲面上的曲线族
基本信息
- 批准号:9626888
- 负责人:
- 金额:$ 16.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-15 至 1999-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harris The investigator will study the geometry of plane curves, and specifically the Severi varieties papametrizing plane curves having given degree and genus and satisfying additional geometric conditions. This will proceed in three directions. First, the investigator will extend existing work on irreducibility and degree of Severi varieties to varieties parametrizing plane curves with singularities other than nodes. Second, he will apply recently developed techniques to describe certain hyperplane sections of these varieties, with possible applications to questions (such as the Enriques conjecture) concerning the Picard groups of these varieties and of the universal curves over them. Finally, the investigator will attempt to use the same ideas to analyze a related question, that of the dimension of the linear series of plane curves with singularities at assigned general points. This is research in the field of algebraic geometry. Algebraic geometry deals with very basic objects, figures that can be defined in the plane and in space by the simplest equations, namely polynomialsis. It is thus one of the oldest parts of modern mathematics--it was studied, for example by the ancient Greeks. At the same time it is one of the newest, having had a revolutionary flowering in the past quarter-century. Within algebraic geometry, perhaps the most basic and most thoroughly studied subject is that of algebraic curves, that is, curves in the plane defined by a single polynomial equation in two variables. For all the work that has been done on these objects classically, however, our understanding of them is still developing, and at a rapid pace; it is a very active field of investigation.
哈里斯 研究者将研究平面曲线的几何,特别是具有给定度和亏格并满足附加几何条件的Severi变种papametrizing平面曲线。这将从三个方向进行。首先,研究者将扩展现有的不可约性和度的Severi品种品种的品种parametrizing平面曲线与奇点以外的节点。其次,他将应用最近发展的技术来描述这些品种的某些超平面部分,可能的应用问题(如恩里克斯猜想)有关皮卡德集团的这些品种和普遍的曲线。最后,研究人员将试图使用相同的想法来分析一个相关的问题,即在指定的一般点处具有奇点的平面曲线的线性系列的维数。 这是代数几何领域的研究。代数几何处理非常基本的对象,可以在平面和空间中定义的最简单的方程,即多项式的数字。因此,它是现代数学中最古老的部分之一,例如古希腊人就研究过它。与此同时,它也是最新的一个,在过去的四分之一个世纪里,它经历了一场革命性的繁荣。在代数几何中,也许最基本和最彻底的研究课题是代数曲线,也就是平面上的曲线由一个二元多项式方程定义。然而,尽管人们已经对这些天体进行了大量的经典研究,但我们对它们的理解仍在迅速发展,这是一个非常活跃的研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Harris其他文献
Eighteenth-century theatrical tragedy
十八世纪戏剧悲剧
- DOI:
10.1017/chol9780521897860.045 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Joseph Harris;W. Burgwinkle;N. Hammond;E. Wilson - 通讯作者:
E. Wilson
Rewriting: How To Do Things With Texts
重写:如何处理文本
- DOI:
10.5860/choice.44-4300 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Joseph Harris - 通讯作者:
Joseph Harris
Rewriting, Second Edition: How to Do Things with Texts
重写,第二版:如何用文本做事
- DOI:
10.7330/9781607326878 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Joseph Harris - 通讯作者:
Joseph Harris
On the Stability of Flows Over Rough Rotating Disks
粗糙转盘上流动的稳定性
- DOI:
10.2514/6.2012-3075 - 发表时间:
2012 - 期刊:
- 影响因子:4.6
- 作者:
Joseph Harris;P. Thomas;S. Garrett - 通讯作者:
S. Garrett
Socio-economics of Personalized Medicine in Asia
亚洲个性化医疗的社会经济学
- DOI:
10.1177/0094306118755396oo - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Joseph Harris - 通讯作者:
Joseph Harris
Joseph Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Harris', 18)}}的其他基金
Geometry of Linear Systems on Curves: Birational Geometry of Moduli Spaces
曲线上线性系统的几何:模空间的双有理几何
- 批准号:
1001926 - 财政年份:2010
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Geometry of Linear Systems on Curves
曲线上线性系统的几何
- 批准号:
0500867 - 财政年份:2005
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Geometry of Rationally Connected Varieties
有理连接品种的几何
- 批准号:
0200659 - 财政年份:2002
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Scientific Computing Research Environment for the Mathematical Sciences (SCREMS)
数学科学科学计算研究环境 (SCREMS)
- 批准号:
9977425 - 财政年份:1999
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Four Pivotal Problems in Classical Algebraic Geometry
经典代数几何的四个关键问题
- 批准号:
9900025 - 财政年份:1999
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Geometry
数学科学:代数几何
- 批准号:
9016097 - 财政年份:1991
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Geometry
数学科学:代数几何
- 批准号:
8896290 - 财政年份:1988
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Geometry
数学科学:代数几何
- 批准号:
8711876 - 财政年份:1987
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
相似海外基金
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New perspective of the sigma functions of algebraic curves and its applications to integrable systems
代数曲线西格玛函数的新视角及其在可积系统中的应用
- 批准号:
21K03289 - 财政年份:2021
- 资助金额:
$ 16.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial algebraic geometry of curves
曲线的组合代数几何
- 批准号:
564290-2021 - 财政年份:2021
- 资助金额:
$ 16.6万 - 项目类别:
University Undergraduate Student Research Awards
RUI: Combinatorial Algebraic Geometry: Curves and Their Moduli
RUI:组合代数几何:曲线及其模
- 批准号:
2101861 - 财政年份:2021
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Study on the arithmetic of algebraic curves and its applications using computers
代数曲线算法及其应用的计算机研究
- 批准号:
20K03517 - 财政年份:2020
- 资助金额:
$ 16.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Algebraic Curves and Their Moduli: Degenerations and Combinatorics
职业:代数曲线及其模:简并和组合学
- 批准号:
1844768 - 财政年份:2019
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Study on special algebraic curves over fields of positive characteristic via computer algebra
正特征域上特殊代数曲线的计算机代数研究
- 批准号:
19K21026 - 财政年份:2018
- 资助金额:
$ 16.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The solution of Hurwitz's problem through Galois covers of algebraic curves and study on curves on K3 surfaces
通过代数曲线的伽罗瓦覆盖解决赫尔维茨问题并研究K3曲面上的曲线
- 批准号:
18K03228 - 财政年份:2018
- 资助金额:
$ 16.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modular Elliptic Curves Applied to Algebraic Number Theory
模椭圆曲线在代数数论中的应用
- 批准号:
528690-2018 - 财政年份:2018
- 资助金额:
$ 16.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




