Connecting Representations of Algebraic Groups, Finite Groups, Lie Algebras, Quantum Groups, and Related Quivers
代数群、有限群、李代数、量子群和相关箭袋的连接表示
基本信息
- 批准号:0200673
- 负责人:
- 金额:$ 11.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator plans to investigate detailed connections amongrepresentation theories of finite groups of Lie types, algebraic groups, Liealgebras, and quivers. The research will concentrate on relating thecohomology theory of finite groups of Lie type and that of restricted Liealgebras and infinitesimal group schemes. The goal is to describe, for agiven rational module for an algebraic group, its support varieties overfinite groups of rational points over finite fields in terms of its supportvarieties over the higher Frobenius kernels. The principal investigatorwill also study the connections between representations of quivers andrepresentations of Kac-Moody Lie algebras and quantum groups (and theirgeneralizations). This will involve the study of subalgebras of Hallalgebras using perverse sheaves, construct canonical basis of genericsubalgebras, realize affine Lie algebras in terms of representations ofquivers, and relate them to Fock spaces. The beauty of mathematical research lies in linking many different subjectareas together to apply available theory in many different fields. This project is in the area of mathematics known as representation theory. At its core, representation theory derives from the study of symmetries, i.e., the symmetries that natural objects, from subatomic particles to planetary orbits, have. Nowadays there are many different kinds of representation theory, each having evolved as the best way to deal with different kinds of problems. The purpose of this project is to find and explore some of the links between some of the different kinds of representation theory. Such links will benefit not only the study of representation theory, but also physics and other sciences that use representation theory as a standard tool.
主要研究者计划调查详细的连接amongrepresentation理论的有限群的李类型,代数群,李代数,和箭。 本文的研究将集中于李型有限群的上同调理论与限制李代数和无穷小群概型的上同调理论的联系。目的是用代数群的高阶Frobenius核上的支集簇来描述代数群的有理模在有限域上有理点的有限群上的支集簇. 主要讲师还将研究箭图的表示与Kac-Moody李代数和量子群(及其推广)的表示之间的联系。这将涉及到利用反常层研究Hall-algebras代数的子代数,构造一般子代数的标准基,用箭图表示实现仿射李代数,并将它们与Fock空间联系起来。 数学研究的美妙之处在于将许多不同的学科领域联系在一起,将现有的理论应用于许多不同的领域。 该项目属于被称为表示论的数学领域。 在其核心,表征理论源于对对称性的研究,即,从亚原子粒子到行星轨道的自然物体所具有的对称性。 现在有许多不同种类的表征理论,每一种都已经发展成为处理不同类型问题的最佳方法。 这个项目的目的是发现和探索一些不同类型的表征理论之间的联系。 这样的联系不仅有利于表征理论的研究,也有利于物理学和其他使用表征理论作为标准工具的科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zongzhu Lin其他文献
The Gelfand-Kirillov Dimensions of Algebras Arising from Representation Theory
由表示论产生的代数的格尔凡德-基里洛夫维数
- DOI:
10.1007/978-94-010-0814-3_7 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Zongzhu Lin - 通讯作者:
Zongzhu Lin
Extensions between Simple Modules for Frobenius Kernels Short running title : Extensions
Frobenius 内核简单模块之间的扩展 简短标题:扩展
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Zongzhu Lin - 通讯作者:
Zongzhu Lin
Quiver representations of constant Jordan type and vector bundles
常 Jordan 型和向量丛的 Quiver 表示
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Andrew T. Carroll;C. Chindris;Zongzhu Lin - 通讯作者:
Zongzhu Lin
Cyclotomic q-Schur algebras an
分圆 q-Schur 代数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zongzhu Lin;Hebing Rui - 通讯作者:
Hebing Rui
SUPPORT VARIETIES FOR MODULES OVER CHEVALLEY GROUPS AND CLASSICAL LIE ALGEBRAS
支持 Chevalley 群和经典李代数上的模块种类
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
J. Carlson;Zongzhu Lin;D. Nakano - 通讯作者:
D. Nakano
Zongzhu Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zongzhu Lin', 18)}}的其他基金
Graduate student research conference on algebra and representation theory
代数和表示论研究生研究会议
- 批准号:
0612971 - 财政年份:2006
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Finite Simple Groups, Geometries, Buildings, and Related Topics - Conference in Honor of Ernest Shult
有限简单群、几何、建筑物和相关主题 - 纪念欧内斯特·舒尔特的会议
- 批准号:
0010105 - 财政年份:2001
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Interplay of Algebraic Groups, Finite Groups, Lie Algebras, Quantum Groups, and their Representations and Cohomology
代数群、有限群、李代数、量子群及其表示和上同调的相互作用
- 批准号:
9970603 - 财政年份:1999
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Representation Theory: From Quantum Groups to Algebraic Groups
表示论:从量子群到代数群
- 批准号:
9401389 - 财政年份:1994
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory: Quantum Groupsand Algebraic Groups
数学科学:表示论:量子群和代数群
- 批准号:
9396259 - 财政年份:1993
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory: Quantum Groupsand Algebraic Groups
数学科学:表示论:量子群和代数群
- 批准号:
9216310 - 财政年份:1992
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring K-2 Children Understandings of Visual Representations in Algebraic Reasoning
探索 K-2 儿童对代数推理中视觉表征的理解
- 批准号:
2201095 - 财政年份:2022
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
A Hopf-algebraic approach to irreducible representations of algebraic supergroups
代数超群不可约表示的 Hopf 代数方法
- 批准号:
22K13905 - 财政年份:2022
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structure and Representations of Infinite-dimensional Algebraic Supergroups
无限维代数超群的结构和表示
- 批准号:
19K14517 - 财政年份:2019
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Complete reducibility, geometric invariant theory, spherical buildings: a new approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的新方法
- 批准号:
19K14516 - 财政年份:2019
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Singularities of a stratification of algebraic representations of SL(2)
SL(2) 代数表示分层的奇点
- 批准号:
540684-2019 - 财政年份:2019
- 资助金额:
$ 11.6万 - 项目类别:
University Undergraduate Student Research Awards
Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
- 批准号:
1901595 - 财政年份:2019
- 资助金额:
$ 11.6万 - 项目类别:
Continuing Grant
Representations and invariants of algebraic groups
代数群的表示和不变量
- 批准号:
2103094 - 财政年份:2018
- 资助金额:
$ 11.6万 - 项目类别:
Studentship
Modular representations of algebraic groups
代数群的模表示
- 批准号:
15K04789 - 财政年份:2015
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic theory of integrable systems. Representations of affine superalgebras and mock theta functions
可积系统的代数理论。
- 批准号:
1400967 - 财政年份:2014
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant