Research on the Anderson metal-insulator transport transition and otherphenomena in disordered systems
无序系统中Anderson金属-绝缘体输运转变及其他现象的研究
基本信息
- 批准号:0200710
- 负责人:
- 金额:$ 19.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subject of this research proposal is the Anderson metal-insulator transport transition and other phenomena in disordered systems. A new approach to the Anderson metal-insulator transition based on transport instead of spectral properties will be investigated. In addition, several related topics will be investigated. Constructive criteria for localization in random media will be developed; an application is planned for the Landau Hamiltonian with a random potential. Local Poisson statistics for the strong insulator spectrum of Anderson-type Hamiltonians in the continuum will be studied. The spectrum of the Anderson model on the Bethe lattice will be studied. Localization at low disorder in one or two dimensions will be investigated.Fortysome years have passed since P. Anderson's seminal article on localization of electrons in random media, but our mathematical understanding of the metal-insulator transition is still very unsatisfactory. In three or more dimensions a transition is believed to occur from an insulator regime, characterized by localized states, to a very different metallic regime characterized by extended states. The energy at which this metal insulator transition occurs is called the mobility edge. The standard mathematical interpretation of this picture is that there should be a transition in the spectrum of the random SchrAdinger from pure point spectrum (localized states) to absolutely continuous spectrum (extended states). But up to now there are no mathematical results on the existence of continuous spectrum and a metal-insulator transition (except for the special case of the Anderson model on the Bethe lattice). A new approach to the Anderson metal-insulator transition is proposed based on transport instead of spectral properties. It is motivated by the fact that the intuitive physical notion of localization has a dynamical interpretation: an initially localized wave packet should remain localized under time evolution, and delocalization may be interpreted as nontrivial transport. The main goal of this proposal is to show the existence of such a transport transition.
这项研究建议的主题是安德森金属 - 绝缘体运输过渡和无序系统中的其他现象。将研究一种基于运输而不是光谱特性的安德森金属绝缘体过渡的新方法。 此外,还将研究几个相关主题。将开发在随机媒体中定位的建设性标准;计划为具有随机潜力的Landau Hamiltonian申请。将研究Continuum Anderson型哈密顿量强的绝缘谱的当地泊松统计数据。 将研究安德森(Anderson)模型在伯特(Bethe)格子上的光谱。自P.安德森(P. 在三个或多个维度中,据信从以局部状态为特征的绝缘体制度出现过渡到以扩展状态为特征的非常不同的金属状态。这种金属绝缘子过渡的能量称为迁移率边缘。这张图片的标准数学解释是,随机施拉丁格从纯点光谱(局部状态)到绝对连续的光谱(扩展状态)中应该存在过渡。但是到目前为止,还没有关于连续频谱和金属 - 绝缘体过渡的数学结果(除了伯特(Bethe)晶格上的安德森模型的特殊情况除外)。 基于运输而不是光谱特性提出了一种针对安德森金属绝缘体过渡的新方法。它的动机是,直观的定位概念具有动态解释:最初的局部波数据包应在时间演化下保持定位,并且可以将定位解释为非平凡的运输。 该提案的主要目标是表明这种运输过渡的存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abel Klein其他文献
Droplet localization in the random XXZ model and its manifestations
随机XXZ模型中的液滴局域化及其表现
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Elgart;Abel Klein;Gunter Stolz - 通讯作者:
Gunter Stolz
Slow propagation of information on the random XXZ quantum spin chain
信息在随机 XXZ 量子自旋链上的缓慢传播
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Elgart;Abel Klein - 通讯作者:
Abel Klein
Abel Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abel Klein', 18)}}的其他基金
International Conference on Random Physical Systems
随机物理系统国际会议
- 批准号:
1840692 - 财政年份:2018
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Phenomena in random Schrodinger operators
随机薛定谔算子中的现象
- 批准号:
1301641 - 财政年份:2013
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant
Localization, delocalization, and other phenomena in random Schrodinger operators
随机薛定谔算子中的定位、离域和其他现象
- 批准号:
1001509 - 财政年份:2010
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant
Delocalization, Localization, and other Phenomena in Disordered Systems
无序系统中的离域、局域化和其他现象
- 批准号:
0457474 - 财政年份:2005
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant
Localization of Classical Waves and Phenomena in Disordered Systems
无序系统中经典波和现象的局域化
- 批准号:
9800883 - 财政年份:1998
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant
Dynamics of the Statistical Mechanics Models
统计力学模型的动力学
- 批准号:
9800860 - 财政年份:1998
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Disordered Systems
数学科学:无序系统研究
- 批准号:
9500720 - 财政年份:1995
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Phenomena Occurring in Disordered Systems and in Statistical Mechanics
数学科学:无序系统中发生的现象和统计力学的研究
- 批准号:
9208029 - 财政年份:1992
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Research: Theory of Disordered Systems
美国-巴西合作研究:无序系统理论
- 批准号:
9016926 - 财政年份:1991
- 资助金额:
$ 19.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Phenomena Occurring in Disordered Systems
数学科学:无序系统中发生的现象的研究
- 批准号:
8905627 - 财政年份:1989
- 资助金额:
$ 19.2万 - 项目类别:
Continuing Grant
相似国自然基金
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有测度初值的分数阶抛物Anderson模型精确间歇性的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有测度初值的分数阶抛物Anderson模型精确间歇性的研究
- 批准号:12201282
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于转换矩阵方法的非厄米体系安德森相变研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无序缺陷手性液晶体系中光学安德森局域及其调控机理研究
- 批准号:12104335
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Critical phenomena of metal-insulator transition in disordered impurity systems: Effects of spin and compensation
无序杂质系统中金属-绝缘体转变的关键现象:自旋和补偿的影响
- 批准号:
22K03449 - 财政年份:2022
- 资助金额:
$ 19.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scaling theories of random quantum systems
随机量子系统的标度理论
- 批准号:
19H00658 - 财政年份:2019
- 资助金额:
$ 19.2万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A rigorous analysis of the stability of magnetism in the Hubbard model: An approach using operator inequalities.
哈伯德模型中磁性稳定性的严格分析:一种使用算子不等式的方法。
- 批准号:
18K03315 - 财政年份:2018
- 资助金额:
$ 19.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electron and phonon transport in single crystal tetragonal niobium bronzes
单晶四方铌青铜中的电子和声子输运
- 批准号:
26400323 - 财政年份:2014
- 资助金额:
$ 19.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum transport in disordered topological insulators
无序拓扑绝缘体中的量子传输
- 批准号:
23540376 - 财政年份:2011
- 资助金额:
$ 19.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)