Phenomena in random Schrodinger operators
随机薛定谔算子中的现象
基本信息
- 批准号:1301641
- 负责人:
- 金额:$ 78.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random Schrödinger operators describe an electron moving in a medium with random impurities. In the widely accepted picture, in three or more dimensions there exists a transition from an insulator region, characterized by localized states, to a very different metallic region, characterized by extended states, while in one or two dimensions there are only localized states. This proposal aims to further the mathematical understanding of this picture and of related topics. Arguably the most important open question is the existence of delocalization in three or more dimensions. Since localization has only been proved by a multiscale analysis (or by the fractional moment method, if applicable), in practice the region of localization is the spectral region where the multiscale analysis can be performed. We propose to make progress on delocalization by proving the existence of a spectral region where the multiscale analysis breaks down, i.e., some consequence of the multiscale analysis is violated, and by showing delocalization properties (e.g., transport) in this region. We will continue our study of the ac-conductivity in linear response theory for the Anderson model to obtain insight on localization and delocalization. We will investigate the continuity of the density of states for Schrödinger operators in four or more dimensions, and for Schrödinger operators with a magnetic field in two or more dimensions. We will extend the bootstrap multiscale analysis to the multi-particle continuous Anderson Hamiltonian, an interacting multi-particle random Schrödinger operator, obtaining Anderson localization with finite multiplicity of eigenvalues, dynamical localization, decay of eigenfunction correlations, etc. We will also investigate localization for multi-particle continuous Anderson Hamiltonians with no assumptions on the single site probability distribution except for compact support, allowing for Bernoulli and other singular single site probability distributions. We will investigate localization for the (discrete) Anderson model in two or more dimensions when the single-site potential is a Bernoulli random variable, a longstanding open problem.Random Schrödinger operators describe an electron moving in a medium with random impurities. In the presence of impurities, a material that normally acts like a metal (i.e., it conducts electric current) will exhibit localization and behave like an insulator for electric currents. The impurities create a metal-insulator transition with important practical consequences. This research will contribute to the understanding of electronic phenomena in condensed matter physics, such as Anderson localization and the quantum Hall effect. Some of the topics of research are suitable for PhD theses, and will be used for the training of future researchers.
随机薛定谔算符描述了电子在随机杂质介质中的运动。 在广泛接受的图像中,在三维或更多维中存在从以局域态为特征的绝缘体区域到以扩展态为特征的非常不同的金属区域的过渡,而在一维或二维中只有局域态。这个建议的目的是进一步的数学理解这幅图和相关的主题。可以说,最重要的悬而未决的问题是在三维或三维以上的离域的存在。 由于局部化只能通过多尺度分析(或分数阶矩法,如果适用的话)来证明,因此在实践中,局部化的区域是可以进行多尺度分析的谱区域。 我们建议通过证明多尺度分析崩溃的谱区域的存在,即,违反了多尺度分析的某些结果,并且通过显示离域特性(例如,(交通)在这一地区。我们将继续研究安德森模型的线性响应理论中的交流电导率,以获得关于局域化和离域化的见解。我们将研究四维或更多维中薛定谔算符的态密度连续性,以及二维或更多维中具有磁场的薛定谔算符的态密度连续性。 我们将把Bootstrap多尺度分析方法推广到多粒子连续安德森哈密顿量,一个相互作用的多粒子随机薛定谔算子,得到了具有有限重本征值的安德森局域化,动力学局域化,本征函数相关的衰减等。我们还将研究多粒子连续安德森哈密顿量的局域化,除了紧支撑外,没有对单点概率分布的假设,考虑到伯努利和其他奇异单点概率分布。我们将研究二维或多维(离散)安德森模型的局部化,当单格点势是伯努利随机变量时,这是一个长期的开放问题。随机薛定谔算子描述了电子在随机杂质介质中的运动。 在存在杂质的情况下,通常表现得像金属的材料(即,它传导电流)将表现出局部化并且表现得像电流的绝缘体。杂质产生了具有重要实际后果的金属-绝缘体转变。这一研究将有助于理解凝聚态物理中的电子现象,如安德森局域化和量子霍尔效应。 一些研究课题适合博士论文,并将用于未来研究人员的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abel Klein其他文献
An explicitly solvable model in “Euclidean” field theory: The Fixed Source
- DOI:
10.1007/bf00532950 - 发表时间:
1974-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Abel Klein - 通讯作者:
Abel Klein
Gaussian OS-positive processes
- DOI:
10.1007/bf00532876 - 发表时间:
1977-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Abel Klein - 通讯作者:
Abel Klein
Localization in the ground state of the ising model with a random transverse field
- DOI:
10.1007/bf02104118 - 发表时间:
1991-01-01 - 期刊:
- 影响因子:2.600
- 作者:
Massimo Campanino;Abel Klein;J. Fernando Perez - 通讯作者:
J. Fernando Perez
Slow propagation of information on the random XXZ quantum spin chain
信息在随机 XXZ 量子自旋链上的缓慢传播
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Elgart;Abel Klein - 通讯作者:
Abel Klein
Decay of two-point functions for (d+1)-dimensional percolation, ising and Potts models withd-dimensional disorder
- DOI:
10.1007/bf02104117 - 发表时间:
1991-01-01 - 期刊:
- 影响因子:2.600
- 作者:
Massimo Campanino;Abel Klein - 通讯作者:
Abel Klein
Abel Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abel Klein', 18)}}的其他基金
International Conference on Random Physical Systems
随机物理系统国际会议
- 批准号:
1840692 - 财政年份:2018
- 资助金额:
$ 78.3万 - 项目类别:
Standard Grant
Localization, delocalization, and other phenomena in random Schrodinger operators
随机薛定谔算子中的定位、离域和其他现象
- 批准号:
1001509 - 财政年份:2010
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
Delocalization, Localization, and other Phenomena in Disordered Systems
无序系统中的离域、局域化和其他现象
- 批准号:
0457474 - 财政年份:2005
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
Research on the Anderson metal-insulator transport transition and otherphenomena in disordered systems
无序系统中Anderson金属-绝缘体输运转变及其他现象的研究
- 批准号:
0200710 - 财政年份:2002
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
Localization of Classical Waves and Phenomena in Disordered Systems
无序系统中经典波和现象的局域化
- 批准号:
9800883 - 财政年份:1998
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
Dynamics of the Statistical Mechanics Models
统计力学模型的动力学
- 批准号:
9800860 - 财政年份:1998
- 资助金额:
$ 78.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Disordered Systems
数学科学:无序系统研究
- 批准号:
9500720 - 财政年份:1995
- 资助金额:
$ 78.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Phenomena Occurring in Disordered Systems and in Statistical Mechanics
数学科学:无序系统中发生的现象和统计力学的研究
- 批准号:
9208029 - 财政年份:1992
- 资助金额:
$ 78.3万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Research: Theory of Disordered Systems
美国-巴西合作研究:无序系统理论
- 批准号:
9016926 - 财政年份:1991
- 资助金额:
$ 78.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Phenomena Occurring in Disordered Systems
数学科学:无序系统中发生的现象的研究
- 批准号:
8905627 - 财政年份:1989
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
相似国自然基金
大Peclect数多粒径分布球形多孔介质内流动、传质和反应特性的研究
- 批准号:21276256
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
不经意传输协议中的若干问题研究
- 批准号:60873041
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
面向Web信息检索的随机P2P拓扑模型及语义网重构技术研究
- 批准号:60573142
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
利用逆转录病毒siRNA随机文库在Hela细胞中批量获得TRAIL凋亡通路相关功能基因的研究
- 批准号:30400080
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Level Statistics for Random Schrodinger Operators
随机薛定谔算子的级别统计
- 批准号:
26400145 - 财政年份:2014
- 资助金额:
$ 78.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The nonlinear Schrodinger equation, its physical origins, and the spectral measures of random matrices
非线性薛定谔方程、其物理起源以及随机矩阵的谱测度
- 批准号:
1265868 - 财政年份:2013
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
Topics in the theory of random Schrodinger operators
随机薛定谔算子理论的主题
- 批准号:
1103104 - 财政年份:2011
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
Efficient Methods for Random Field Approximation with Application to Nonlinear Schrodinger Equation
随机场逼近的有效方法及其在非线性薛定谔方程中的应用
- 批准号:
1016047 - 财政年份:2010
- 资助金额:
$ 78.3万 - 项目类别:
Standard Grant
Localization, delocalization, and other phenomena in random Schrodinger operators
随机薛定谔算子中的定位、离域和其他现象
- 批准号:
1001509 - 财政年份:2010
- 资助金额:
$ 78.3万 - 项目类别:
Continuing Grant
Correlations and Transport for Random Schrodinger Operators
随机薛定谔算子的相关性和传输
- 批准号:
0803379 - 财政年份:2008
- 资助金额:
$ 78.3万 - 项目类别:
Standard Grant
Spectrum of random magnetic Schrodinger operators
随机磁薛定谔算子的谱
- 批准号:
20540177 - 财政年份:2008
- 资助金额:
$ 78.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Schrodinger operators with random δ magnetic fields
随机 δ 磁场薛定谔算子的分析
- 批准号:
20740093 - 财政年份:2008
- 资助金额:
$ 78.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on Spectra of Random Schrodinger Operators
随机薛定谔算子谱的研究
- 批准号:
18540171 - 财政年份:2006
- 资助金额:
$ 78.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)