Harmonic Analysis and Nonlinear Hamiltonian Equations
调和分析和非线性哈密顿方程
基本信息
- 批准号:0200880
- 负责人:
- 金额:$ 6.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project suggests investigations in the area of Harmonic Analysis and Nonlinear Hamiltonian Equations. One direction of the research in the analysis of singular integral operators.Current interests include Lebesgue space estimates on Fourier integral operators associated to singular and nonsingular canonical relations. Such estimates provide important tools for the analysis of properties of solutions to nonlinear Hamiltonian systems: global existence, smoothness, and stability. The other direction of the research concerns specific properties of solitary wave solutions to nonlinear Hamiltonian systems.Such soliton-like solutions were proved to exist in manydifferent contexts. If the equation is invariant under theaction of some Lie group, then the solitary waves may possessstability properties. The program of research focuses on thestability of solitary waves with minimal energy, which areexpected to be of particular importance for applications.When the amplitude of the waves increases, their interaction with the medium becomes important. This interaction may seriouslychange the behavior of the waves and lead to the appearance ofnonlinear solitary waves, or solitons. Such nonlinear wavesdescribe central phenomena in fiber optics, plasma physics,theory of superconductivity, theory of elementary particles,meteorology, and oceanology. Detailed knowledge of propertiesof such waves, and in particular their stability or instability,will allow to predict the chances of sudden weather changes,develop optical waveguides, and describe quantum effects onthe scales being inexorably approached by today's electronicsand chip manufacturers, let alone the Experimental Physics.Natural phenomena pose new challenges to the intricately related fields, Harmonic Analysis and the Theory of Nonlinear Equations, and stimulate further refinement of the tools of modernMathematics.
该项目建议在调和分析和非线性哈密顿方程领域进行研究。 奇异积分算子分析的研究方向之一,目前主要研究奇异和非奇异典型关系下Fourier积分算子的Lebesgue空间估计。这样的估计提供了重要的工具,分析非线性哈密顿系统的解的性质:整体存在性,光滑性和稳定性。另一个研究方向是非线性Hamilton系统的孤立波解的特殊性质,这类类孤立波解在许多不同的背景下都被证明是存在的.如果方程在李群作用下是不变的,则孤立波可能具有稳定性。该研究计划的重点是具有最小能量的孤立波的稳定性,预计这对应用特别重要。当波的振幅增加时,它们与介质的相互作用变得重要。这种相互作用可能会严重改变波的行为,导致非线性孤立波或孤子的出现。这种非线性波描述了纤维光学、等离子体物理、超导理论、基本粒子理论、气象学和海洋学中的中心现象。详细了解这种波的性质,特别是它们的稳定性或不稳定性,将有助于预测天气突变的可能性,发展光波导,并在当今电子和芯片制造商不可阻挡地接近的尺度上描述量子效应,更不用说实验物理学了。自然现象对错综复杂的相关领域提出了新的挑战,谐波分析和非线性方程理论,并促进现代数学工具的进一步完善。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren Wogen其他文献
On Biholomorphy in Infinite Dimensions
- DOI:
10.1007/s12220-008-9031-1 - 发表时间:
2008-04-19 - 期刊:
- 影响因子:1.500
- 作者:
Joseph A. Cima;Warren Wogen - 通讯作者:
Warren Wogen
Warren Wogen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren Wogen', 18)}}的其他基金
Mathematical Sciences: Topics in Operator Theory
数学科学:算子理论主题
- 批准号:
9001842 - 财政年份:1990
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Operator Theory
数学科学:算子理论主题
- 批准号:
8800130 - 财政年份:1988
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Weakly Closed Algebras with a Single Generator
数学科学:具有单个生成器的弱闭代数
- 批准号:
8600729 - 财政年份:1986
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Lp-Convergence in Nonlinear Harmonic Analysis
非线性谐波分析中的 Lp 收敛
- 批准号:
562822-2021 - 财政年份:2021
- 资助金额:
$ 6.75万 - 项目类别:
University Undergraduate Student Research Awards
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
- 批准号:
DP200101065 - 财政年份:2020
- 资助金额:
$ 6.75万 - 项目类别:
Discovery Projects
Applied Harmonic Analysis to Non-Convex Optimizations and Nonlinear Matrix Analysis
将调和分析应用于非凸优化和非线性矩阵分析
- 批准号:
1816608 - 财政年份:2018
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
- 批准号:
1500707 - 财政年份:2015
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Steady-State Analysis of Nonlinear Circuits using the Harmonic Balance on Multi-GPU Architecture
在多 GPU 架构上使用谐波平衡进行非线性电路的稳态分析
- 批准号:
470238-2014 - 财政年份:2014
- 资助金额:
$ 6.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Analysis of standing waves for nonlinear Schroedinger equations with harmonic potential
具有谐波势的非线性薛定谔方程的驻波分析
- 批准号:
26800074 - 财政年份:2014
- 资助金额:
$ 6.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nonlinear Sobolev Inequalities, Potential Theory and Harmonic Analysis
非线性 Sobolev 不等式、势理论和调和分析
- 批准号:
1161622 - 财政年份:2012
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Nonlinear harmonic analysis and partial differential equations of Lane-Emden and Riccati type
非线性调和分析以及 Lane-Emden 和 Riccati 型偏微分方程
- 批准号:
0901083 - 财政年份:2009
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Nonlinear potential theory, harmonic analysis and integral inequalities
非线性势论、调和分析和积分不等式
- 批准号:
0901550 - 财政年份:2009
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Harmonic analysis and partial differential equations: sharp geometric inequalities, fully nonlinear equations and applications
调和分析和偏微分方程:尖锐的几何不等式、完全非线性方程和应用
- 批准号:
0901761 - 财政年份:2009
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant