Harmonic analysis and partial differential equations: sharp geometric inequalities, fully nonlinear equations and applications

调和分析和偏微分方程:尖锐的几何不等式、完全非线性方程和应用

基本信息

  • 批准号:
    0901761
  • 负责人:
  • 金额:
    $ 23.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-11-15 至 2013-10-31
  • 项目状态:
    已结题

项目摘要

This research project involves topics that use harmonic analysis techniques with a view toward applications to nonlinear partial differential equations. One part of the project investigates the sharp geometric inequalities of Sobolev, Moser-Trudinger, and Adams, considers the existence of extremal functions for them, and explores applications of these ideas in a variety of geometric settings (e.g., Euclidean space, Riemannian manifolds, the Heisenberg group, spheres in complex space, CR-manifolds). Such problems are important in both analysis and geometry. The principal investigator, jointly with his collaborators, has succeeded in deriving the sharp constants and existence of extremal functions in a number of important cases. Nevertheless, there are still many challenging problems that remain open. Another group of problems is concerned with the existence, uniqueness, and regularity of solutions to nonlinear partial differential equations, in particular, the inhomogeneous infinity Laplacian and degenerate Monge-Ampere equations.Harmonic analysis and nonlinear partial differential equations are central areas of modern mathematics. They have found applications in numerous disciplines, including engineering (such as vibration and noise reduction), stochastic control and optimization, game theory, physics, chemical combustion, mass transport, human vision and other topics in the life and medical sciences. Graduate students will participate in this project by receiving research training under the supervision of the principal investigator.
这项研究项目涉及使用调和分析技术的主题,以期应用于非线性偏微分方程。项目的一部分研究了Sobolev,Moser-Trudinger和Adams的尖锐几何不等式,考虑了它们的极值函数的存在性,并探索了这些思想在各种几何环境中的应用(例如,欧几里德空间,黎曼流形,Heisenberg群,复空间中的球面,CR-流形)。这类问题在分析和几何中都很重要。这位首席研究员与他的合作者一起,在一些重要的案例中成功地推导出了尖端常数和极值函数的存在性。然而,仍然有许多具有挑战性的问题仍然悬而未决。另一类问题是关于非线性偏微分方程解的存在唯一性和正则性,特别是非齐次无穷拉普拉斯方程和退化的Monge-Ampere方程。调和分析和非线性偏微分方程组是现代数学的中心领域。它们在许多学科中都有应用,包括工程学(如减振和降噪)、随机控制和优化、博弈论、物理学、化学燃烧、质量传输、人类视觉以及生命和医学科学中的其他主题。研究生将通过在首席研究员的指导下接受研究培训来参与这个项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guozhen Lu其他文献

Duality theory of weighted Hardy spaces with arbitrary number of parameters
具有任意数量参数的加权Hardy空间的对偶理论
  • DOI:
    10.1515/forum-2012-0018
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guozhen Lu;Zhuoping Ruan
  • 通讯作者:
    Zhuoping Ruan
Conformally Covariant Boundary Operators and Sharp Higher Order Sobolev Trace Inequalities on Poincar\'e-Einstein Manifolds
庞加莱爱因斯坦流形上的共形协变边界算子和尖锐高阶 Sobolev 迹不等式
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Flynn;Guozhen Lu;Qiaohua Yang
  • 通讯作者:
    Qiaohua Yang
Multiparameter Hardy space theory on Carnot-Carathodory spaces and product spaces of homogeneous type.
Carnot-Carath 的多参数 Hardy 空间理论
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongsheng Han;Ji Li;Guozhen Lu
  • 通讯作者:
    Guozhen Lu
Existence and nonexistence of extremals for critical Adams inequalities in R4 and Trudinger-Moser inequalities in R2
R4 中临界 Adams 不等式和 R2 中 Trudinger-Moser 不等式的极值存在和不存在
  • DOI:
    10.1016/j.aim.2020.107143
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Chen;Guozhen Lu;Maochun Zhu
  • 通讯作者:
    Maochun Zhu
Caffarelli-Kohn-Nirenberg identities, inequalities and their stabilities
Caffarelli-Kohn-Nirenberg 恒等式、不平等及其稳定性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Cazacu;J. Flynn;N. Lam;Guozhen Lu
  • 通讯作者:
    Guozhen Lu

Guozhen Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guozhen Lu', 18)}}的其他基金

Multiparameter Harmonic analysis and sharp geometric inequalities with applications to PDEs
多参数调和分析和锐几何不等式及其在偏微分方程中的应用
  • 批准号:
    1700918
  • 财政年份:
    2016
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Multiparameter Harmonic analysis and sharp geometric inequalities with applications to PDEs
多参数调和分析和锐几何不等式及其在偏微分方程中的应用
  • 批准号:
    1301595
  • 财政年份:
    2013
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
International workshop in Fourier analysis and partial differential equations; Beijing, China, December 2008
傅里叶分析和偏微分方程国际研讨会;
  • 批准号:
    0823812
  • 财政年份:
    2008
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
International Conference in Harmonic Analysis and Partial Differential Equations with Applications
调和分析和偏微分方程及其应用国际会议
  • 批准号:
    0723627
  • 财政年份:
    2007
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Harmonic analysis and partial differential equations: Sharp geometric inequalities, fully nonlinear equations and applications
调和分析和偏微分方程:尖锐的几何不等式、完全非线性方程和应用
  • 批准号:
    0500853
  • 财政年份:
    2005
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Continuing Grant
NSF-CBMS Regional Research Conference, Free boundary problems in partial differential equations and applications, May 18-22, 2003
NSF-CBMS 区域研究会议,偏微分方程中的自由边界问题及其应用,2003 年 5 月 18-22 日
  • 批准号:
    0225758
  • 财政年份:
    2003
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Multiparameter Hardy Space, CR-Yamabe Problems and Nonisotropic Sobolev spaces on the Heisenberg and stratified groups, L^p estimates, unique continuation and covering lemmas
海森堡和分层群上的多参数 Hardy 空间、CR-Yamabe 问题和非各向同性 Sobolev 空间、L^p 估计、唯一延拓和覆盖引理
  • 批准号:
    0196349
  • 财政年份:
    2000
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Multiparameter Hardy Space, CR-Yamabe Problems and Nonisotropic Sobolev spaces on the Heisenberg and stratified groups, L^p estimates, unique continuation and covering lemmas
海森堡和分层群上的多参数 Hardy 空间、CR-Yamabe 问题和非各向同性 Sobolev 空间、L^p 估计、唯一延拓和覆盖引理
  • 批准号:
    9970352
  • 财政年份:
    1999
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations and Harmonic Analysis for the Sublaplacians
数学科学:Sublaplacian 的偏微分方程和调和分析
  • 批准号:
    9622996
  • 财政年份:
    1996
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
  • 批准号:
    9315963
  • 财政年份:
    1993
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
  • 批准号:
    31971981
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
  • 批准号:
    31900571
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
  • 批准号:
    31972542
  • 批准年份:
    2019
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
  • 批准号:
    71473155
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
  • 批准号:
    41101116
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
  • 批准号:
    2324706
  • 财政年份:
    2023
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
  • 批准号:
    2247185
  • 财政年份:
    2023
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
  • 批准号:
    2153794
  • 财政年份:
    2022
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
  • 批准号:
    2154031
  • 财政年份:
    2022
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Continuing Grant
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
  • 批准号:
    DP200101065
  • 财政年份:
    2020
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Discovery Projects
Harmonic analysis: function spaces and partial differential equations
调和分析:函数空间和偏微分方程
  • 批准号:
    DP190100970
  • 财政年份:
    2019
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Discovery Projects
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
  • 批准号:
    RGPIN-2015-06688
  • 财政年份:
    2019
  • 资助金额:
    $ 23.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了