Moduli Spaces that are Upper Half Plane Quotients and the Inverse Galois Problem
上半平面商的模空间和逆伽罗瓦问题
基本信息
- 批准号:0202259
- 负责人:
- 金额:$ 11.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
MODULAR TOWERS AND THE IGP OVER THE RATIONALS: Often researchers usealgebraic relations in two variables x and y over a field to describesignificant data. Some examples are sets of values x having an (x,y)with entries in the field that satisfy the relation. One of these is theDavenport's problem of determining equivalence classes of polynomialsaccording to their value sets over finite fields. Describing complexmultiplication fields, generated by those x with (x,y) a specialelliptic curve torsion point, is a variant. A relation with a datavariable x produces a permutation group G: The Galois group. Theinvestigator treats these as cases of the Inverse GaloisProblem (IGP). One goal is to decide, from certain listsof relations, if some have the rational numbers as definition field.Serious group theory helped solve Davenport's 1965 problem and Schur'sexceptional polynomial problem (1919; see below). Further, modularcurves reveal complex multiplication to be a version of Schur'sproblem. Having command of all finite simple groups has manyapplications. One is to list those groups attached to exceptionalpolynomials. Knowing many characters of Chevalley groups showed Thompsonand Voelklein where to find series of solutions to the IGP. Yet, it willrequire more than massive group theory to solve the whole IGP. Theinvestigator uses Modular Towers, a modular curve generalization, tofinesse unknowable group classifications. He and his students let aknown group G, and a prime p dividing the order of G, seed the base levelof a Modular Tower. Higher tower levels code relations with mysteriousgroups covering G related to p. Coherent maps between the tower levelsreplace details on these intricate covering groups. Work of Y. Ihara andJ.P. Serre inspire showing that Modular Towers has many properties oftheir special, modular curve, case. For example, high tower levels for aG with no Z/p quotient should have no rational points. For certain groups G, and the prime p=2, this extends Serre's program on spin structures. The investigator applies new spin-like structures to all cases when p is 2 and to all primes p. PRACTICAL CRYPTOGRAPHY AND IGP OVER FINITE FIELDS: Modern cryptosystemsaim to secure electronic transfers of data. Exceptional functions act aspermutations on infinitely many finite fields. A special case of theInverse Galois Problem over finite fields asks how to constructexceptional functions. These scrambling functions look simple. Users caneasily apply them (up to 1993, all came from the 19th century). Still,finding them has been difficult. Fried (UCI), Guralnick (USC) and Saxl(Cambridge) nearly classify them. This solves old problems (Dickson 1896and Carlitz 1965). They also produce unexpected new examples. Their bestdiscovery is that exceptional polyomial Galois groups (excluding nowwell-understood cases) have the affine geometric property. This isuseful for it gives the degrees of exceptional polynomials. Yet, it isalso a difficult challenge: There can be no final description of allaffine groups. The investigator with A. Mezard approaches affine groupsby generalizing to all algebraic relations over finite fieldsGrothendieck's famous results for tame relations. Applications forexceptional functions alone include ways to manipulate data forencryption and to assure integrity. This will mean faster, moreefficient and accurate file back-ups; more stable software; and moresecure data transfers.
模块塔和IGP在理性上:研究人员经常使用两个变量x和y在一个字段中的代数关系来描述重要数据。一些示例是具有(x,y)的值x的集合,其中字段中的条目满足关系。其中之一是达文波特问题的确定等价类的多项式根据其价值集有限域。描述复乘域是一种变体,它是由具有特殊椭圆曲线扭点的复乘域x生成的。与一个数据变量x的关系产生一个置换群G:伽罗瓦群。研究者把这些作为逆伽罗瓦问题(IGP)的情况下。一个目标是决定,从某些listsof关系,如果一些有理数作为definitionfield.Serious群论帮助解决达文波特的1965年问题和舒尔的例外多项式问题(1919年;见下文)。此外,模曲线揭示了复数乘法是舒尔问题的一个版本。掌握所有有限单群有许多应用。一个是列出那些附加到exceptionalpolynomial的群。知道Chevalley群的许多性质,就能给Stephonson和Voelklein指明在哪里找到IGP的一系列解。然而,要解决整个IGP问题,需要的不仅仅是大量群论。研究者使用模块化塔,一个模块化的曲线概括,以精细化不可知的群体分类。他和他的学生们让一个已知的群G和一个素数p来划分G的阶数,作为模块塔的底层。更高的塔层代码与覆盖G相关的p的复杂群的关系。塔层之间的连贯映射取代了这些复杂覆盖群的细节。Y的工作。Ihara和J.P.Serre启发表明,模块化塔具有其特殊的模块化曲线的许多特性。例如,没有Z/p商的aG的高塔水平应该没有有理点。对于某些群G和素数p = 2,这扩展了塞尔关于自旋结构的程序。调查人员适用于新的自旋结构的所有情况下,当p是2和所有素数p.实用的密码学和IGP有限领域:现代cryptosystemsaim安全的电子数据传输。异常函数作用于无限多个有限域上。有限域上伽罗瓦逆问题的一个特殊情况是如何构造概念函数。这些加扰函数看起来很简单。用户可以很容易地应用它们(直到1993年,都来自19世纪世纪)。然而,找到他们仍然很困难。Fried(UCI)、Guralnick(USC)和Saxl(剑桥)几乎将它们分类。这解决了老问题(Dickson 1896和Carlitz 1965)。它们还产生了意想不到的新例子。他们最好的发现是特殊的多项式伽罗瓦群(不包括现在已经很好理解的情况)具有仿射几何性质。这是有用的,因为它给出了例外多项式的次数。然而,这也是一个困难的挑战:不可能有对allaffine组的最终描述。调查人员与A。Mezard方法仿射群一般化到所有代数关系有限fieldsGrothendieck的著名结果驯服的关系。仅例外功能的应用就包括操纵数据、加密和确保完整性的方法。这将意味着更快、更有效和更准确的文件备份;更稳定的软件;以及更安全的数据传输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Fried其他文献
Role of cholecystokinin in the regulation of liquid gastric emptying and gastric motility in humans: studies with the CCK antagonist loxiglumide
胆囊收缩素在人体液体胃排空和胃动力调节中的作用:CCK 拮抗剂洛昔格鲁米特的研究
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:24.5
- 作者:
W. Schwizer;J. Borovička;P. Kunz;R. Fraser;C. Kreiss;M. D'Amato;G. Crelier;P. Boesiger;Michael Fried - 通讯作者:
Michael Fried
Thiopurine S-methyltransferase polymorphisms: efficient screening method for patients considering taking thiopurine drugs
硫嘌呤S-甲基转移酶多态性:考虑服用硫嘌呤药物患者的有效筛查方法
- DOI:
10.1007/s00228-004-0728-1 - 发表时间:
2004 - 期刊:
- 影响因子:2.9
- 作者:
Barbara Wusk;G. Kullak;C. Rammert;A. Eckardstein;Michael Fried;K. Rentsch - 通讯作者:
K. Rentsch
Sedation and analgesia for colonoscopy: patient tolerance, pain, and cardiorespiratory parameters.
结肠镜检查的镇静和镇痛:患者耐受性、疼痛和心肺参数。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:7.7
- 作者:
F. Froehlich;J. Thorens;W. Schwizer;M. Preisig;M. Köhler;Ron D. Hays;Michael Fried;J. Gonvers - 通讯作者:
J. Gonvers
Tu2066 Prevalence of Irritable Bowel Syndrome in China: Joint Effects of Psychiatric Morbidity With Life Event Stress and Lactose Intake
- DOI:
10.1016/s0016-5085(13)63422-8 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:
- 作者:
Yanqin Long;Yanyong Deng;Hua Chu;Jianfeng Yang;Yubin Zhu;Xia Zheng;Huiqin He;Zhihui Huang;Liang Luo;Michael Fried;Ning Dai;Mark R. Fox - 通讯作者:
Mark R. Fox
Mo2099 Weight Gain in Anorexia Nervosa Patients Is Associated With Normalization of Gastric Contractile Activity and Visceral Sensation but Does Not Impact on Emptying Rate and Dyspeptic Symptoms
- DOI:
10.1016/s0016-5085(13)62751-1 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:
- 作者:
Sena Kuyumcu;Oliver Goetze;Mark R. Fox;Dieter Menne;Peter Boesiger;Gabriella Milos;Michael Fried;Werner Schwizer;Andreas Steingoetter - 通讯作者:
Andreas Steingoetter
Michael Fried的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Fried', 18)}}的其他基金
Moduli Spaces that are Upper Half Plane Quotients and the Inverse Galois Problem
上半平面商的模空间和逆伽罗瓦问题
- 批准号:
0455266 - 财政年份:2004
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
Second RIMS-UCI Collaboration Conference: Arithmetic Applications of Moduli Degeneration; May 7-10, 2003; Irvine, CA
第二届 RIMS-UCI 合作会议:模退化的算术应用;
- 批准号:
0326770 - 财政年份:2003
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
Modular Towers of Noncongruence Curves
非全等曲线模块化塔
- 批准号:
9970676 - 财政年份:1999
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
International Press Lecture Series II: Invariant Theory and Combinatorics of Representations
国际新闻讲座系列二:不变理论和表示组合学
- 批准号:
9632373 - 财政年份:1996
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
Mathematical Sciences: Homogeneous Space Properties of Moduli Spaces: With Applications to Theta Functions and Finite Fields
数学科学:模空间的齐次空间性质:在 Theta 函数和有限域中的应用
- 批准号:
9622928 - 财政年份:1996
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Results from the Monodromy Method
数学科学:单峰法的结果
- 批准号:
9305590 - 财政年份:1993
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
Cooperative Interactions of Gene-Regulatory Proteins
基因调控蛋白的协同相互作用
- 批准号:
9196154 - 财政年份:1991
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
Cooperative Interactions of Gene-Regulatory Proteins
基因调控蛋白的协同相互作用
- 批准号:
8918670 - 财政年份:1990
- 资助金额:
$ 11.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Connectivity of the Hurwitz MonodromyGroup, and Groups as Galois Groups
数学科学:赫尔维茨单函数群和伽罗瓦群的连通性
- 批准号:
8702150 - 财政年份:1987
- 资助金额:
$ 11.07万 - 项目类别:
Continuing grant
Regulatory Interactions of the cAMP Receptor Protein
cAMP 受体蛋白的调节相互作用
- 批准号:
8609466 - 财政年份:1986
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
相似海外基金
INSPIRE- Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE-交叉参与空间:包容性、弹性、嵌入式
- 批准号:
10106857 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
EU-Funded
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Salary Programs
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Research Grant
DDRIG: Cementing Spaces: The Material That Made Room for New Cultures in the Twentieth-Century
DDRIG:水泥空间:为二十世纪新文化腾出空间的材料
- 批准号:
2341731 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Standard Grant
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Research Grant
INSPIRE - Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE - 交叉参与空间:包容性、弹性、嵌入式
- 批准号:
10091666 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
EU-Funded
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Fellowship
Spread through air spaces (STAS) の分子学的特性と発現機序の解明
阐明空气传播(STAS)的分子特征和表达机制
- 批准号:
24K19434 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Other Rome: Centring People and Spaces of Maintenance
另一个罗马:以人员和维护空间为中心
- 批准号:
AH/Y000277/1 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Fellowship
Designing safe and biodiverse green spaces in prisons
在监狱中设计安全和生物多样性的绿色空间
- 批准号:
AH/Z505523/1 - 财政年份:2024
- 资助金额:
$ 11.07万 - 项目类别:
Research Grant