Compactness of Critical Metrics and Some Fully Nonlinear Equations in Conformal Geometry

共形几何中关键度量的紧性和一些完全非线性方程

基本信息

  • 批准号:
    0202477
  • 负责人:
  • 金额:
    $ 11.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT DMS - 0202477.Jeff A. Viaclovsky's project has three parts. The first part is joint work with Gang Tian, dealing with orbifold compactness of Bach flat metrics in dimension 4. The second part is joint work with Matt Gursky, and is about curvature functionals and conformal deformation of curvatures in dimension 3. The third part deals with existence of solutions to some fully nonlinear equations in conformal geometry. The first project is to understand compactness properties of the moduli space of critical points of the L2 norm of the Weyl tensor in 4 dimensions. The Euler-Lagrange equations are known as the Bach equations, and there are many known solutions, for example, metrics that are locally conformally Einsten, and self-dual or anti-self-dual metrics. Since it is known that these metrics exist in abundance, it is an interesting problem to understand the moduli space of solutions. The project of Viaclovsky and Tian is to show that, with certain geometric conditions, one may compactify this space by adding metrics with orbifold singularities. The other parts of the project deal with fully nonlinear equations inconformal geometry. The goal is to conformally deform a metric so that the kth elementary symmetric function of the eigenvalues of the Schouten tensor is constant. This may be viewed as a fully nonlinear generalization of the well-known Yamabe problem. An application of this is to improve the curvature by conformal deformation. For example, given an initial metric, conditions are found so that the metric can be conformally deformed to positive sectional curvature. The project with Tian generalizes some well-known results for Einstein metrics. Einstein metrics are particularly interesting from the connection with Eisteins's theory of general relativity, and the Bach equations are a natural higher order generalization of the Einstein equation. The work in conformal geometry is naturally conformally invariant and also has applications in physics through conformal field theory. Firthermore, new notions of mass arise for these equations, and this is also of interest in general relativity. These equations also have applications to determining the topology of 3-manifolds, given some geometric constraint on the curvature.
摘要DMS - 0202477.Jeff A. Viaclovsky的项目有三个部分。第一部分是与田刚的合作,研究了4维Bach平坦度规的轨道紧性。第二部分是与Matt Gursky的联合工作,是关于3维曲率泛函和曲率的共形变形。第三部分讨论了共形几何中一类完全非线性方程解的存在性。 第一个项目是理解四维Weyl张量的L2范数临界点的模空间的紧性。欧拉-拉格朗日方程被称为巴赫方程,并且有许多已知的解,例如,局部共形的爱因斯坦度量,以及自对偶或反自对偶度量。由于已知这些度量大量存在,理解解的模空间是一个有趣的问题。该项目的Viaclovsky和田是表明,在一定的几何条件下,人们可以紧这个空间增加度量与orbifold奇点。该项目的其他部分处理完全非线性方程inconformal几何。我们的目标是共形变形的度量,使第k个基本对称函数的特征值的Schouten张量是常数。这可以看作是一个完全非线性推广的著名Yamabe问题。这一点的一个应用是通过保形变形来改善曲率。例如,给定一个初始度量,条件被发现,使度量可以共形变形为正截面曲率。田的项目推广了爱因斯坦度量的一些著名结果。爱因斯坦度量与爱因斯坦的广义相对论的联系特别有趣,巴赫方程是爱因斯坦方程的自然高阶推广。共形几何中的工作自然是共形不变的,并且通过共形场论在物理学中也有应用。首先,这些方程中出现了新的质量概念,这也是广义相对论感兴趣的。这些方程也有应用,以确定拓扑的3流形,给定一些几何约束的曲率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeff Viaclovsky其他文献

Degenerations of LeBrun twistor spaces
勒布伦扭转空间的简并
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nobuhiro Honda;Jeff Viaclovsky;N. Honda;N. Honda
  • 通讯作者:
    N. Honda
Conformal symmetries of self-dual hyperbolic monopole metrics
自对偶双曲单极子度量的共形对称性
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nobuhiro Honda;Jeff Viaclovsky
  • 通讯作者:
    Jeff Viaclovsky

Jeff Viaclovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeff Viaclovsky', 18)}}的其他基金

Southern California Geometric Analysis Seminar, Winter 2023
南加州几何分析研讨会,2023 年冬季
  • 批准号:
    2236605
  • 财政年份:
    2023
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
  • 批准号:
    2105478
  • 财政年份:
    2021
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
  • 批准号:
    1811096
  • 财政年份:
    2018
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Continuing Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
  • 批准号:
    1405725
  • 财政年份:
    2014
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Continuing Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
  • 批准号:
    1105187
  • 财政年份:
    2011
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
Pacific Rim Workshop in Geometric Analysis, Vancouver, Summer 2010
环太平洋几何分析研讨会,温哥华,2010 年夏季
  • 批准号:
    1016317
  • 财政年份:
    2010
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
  • 批准号:
    0804042
  • 财政年份:
    2008
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Continuing Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
  • 批准号:
    0735928
  • 财政年份:
    2007
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
  • 批准号:
    0503506
  • 财政年份:
    2005
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    9902380
  • 财政年份:
    1999
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Continuing Grant
Exploring volcanic arcs as factories of critical minerals
探索火山弧作为关键矿物工厂
  • 批准号:
    FT230100230
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    ARC Future Fellowships
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Research Grant
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Collaborative R&D
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Research Grant
Crossing the Finish Line: Intervening in a Critical Period for Educational Investment
冲过终点线:介入教育投资关键期
  • 批准号:
    2343873
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
  • 批准号:
    2345769
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
GEO-CM: Biogeochemical Processes Affecting Critical Mineral Hosts in Mine Tailings and Weathered Ore Zones
GEO-CM:影响尾矿和风化矿带中关键矿物的生物地球化学过程
  • 批准号:
    2327617
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Standard Grant
Unraveling critical neutrino interaction uncertainties with the upgraded T2K experiment
通过升级的 T2K 实验揭示关键的中微子相互作用的不确定性
  • 批准号:
    24K17065
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
  • 批准号:
    BB/Y512564/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.54万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了