Differential Equations and the Geometry of Manifolds
微分方程和流形几何
基本信息
- 批准号:1811096
- 负责人:
- 金额:$ 20.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important motivation for the research in this project is to understand the relationship between the geometry and the topology of a space. The latter, topology, is the study of properties of a space which are invariant under continuous stretching or bendings of a space, while the former, geometry, involves understanding distances and is more rigid. For example, the surface of our planet is a sphere, and one measures distances between points on it by computing lengths along great circle paths. (The Earth is actually an oblate spheroid, but it is very close to being perfectly spherical.) One can imagine deforming the Earth by pushing in or pulling on small or large regions to warp the geometry. Such a deformed shape is somehow less appealing than the familiar round Earth, and there are many ways to make this notion of being "bent out of shape" very precise in terms of minimizing some sort of total energy measurement. This is directly related to physical principles which say that the state of a physical system will tend towards a final configuration which minimizes the total energy. This idea can also be generalized to higher-dimensional objects called manifolds, which are generalized versions of the surface of our planet. (For example, the space that we live in is three-dimensional, and if one includes time, we are in a four-dimensional universe.) In order to understand these types of higher-dimensional objects, one attempts to find the best way to measure distances on them which use the least amount of energy, and maximize the symmetries of the space. The projects in this proposal are to define appropriate energies on such spaces, and to seek out the important optimal geometries which minimize the total energy.In more technical terms, the research of the PI is, broadly speaking, to use solutions of partial differential equations which are geometric in origin to study properties of differentiable manifolds. The main areas of concentration of the PI's research are the desingularization of Einstein orbifolds, the construction of sequences of collapsing Ricci-flat metrics on K3 surfaces, the construction of a global moduli space of scalar-flat Kahler ALE metrics, and the study of the orbifold Yamabe problem. In joint work with Morteza, an existence theorem for Einstein metrics was proved in the asymptotically hyperbolic Einstein setting, which generalized a result of Biquard in dimension four, and the PI proposes several extensions and generalizations of this work. In ongoing work with Hein, Sun, and Zhang, the PI has constructed new examples of Ricci-flat metrics on K3 surfaces which collapse to an interval, with Heisenberg nilmanifolds occurring as fibers in the regular collapsing regions. There are many interesting questions resulting from this work, especially to relate these degenerations to polarized degenerations of K3 surfaces. In joint work with Han, the PI proposes a plan towards constructing a global moduli space of scalar-flat Kahler ALE metrics for certain groups at infinity. Also, in joint work with Tao Ju, the PI has proved some nonexistence results for the orbifold Yamabe problem, and plans to generalize this further. Finally, the PI is committed to integrating research and education and cultivating intellectual development on many levels. The PI has been active in outreach and organization of conferences in the mathematics community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究的一个重要动机是理解空间的几何和拓扑之间的关系。后者,拓扑学,是研究空间的性质,这些性质在空间的连续拉伸或弯曲下是不变的,而前者,几何学,涉及理解距离,并且更加严格。例如,地球的表面是一个球体,人们通过计算沿沿着大圆路径的长度来测量球体上点之间的距离。 (The地球实际上是一个扁球体,但它非常接近完美的球形。 你可以想象通过向内推或拉小的或大的区域来扭曲几何形状,从而使地球变形。这种变形的形状在某种程度上不如我们熟悉的圆形地球那么吸引人,而且有很多方法可以使这种“弯曲变形”的概念在最小化某种总能量测量方面非常精确。这与物理原理直接相关,物理原理说,物理系统的状态将趋向于使总能量最小化的最终配置。这个想法也可以推广到更高维的物体,称为流形,这是我们星球表面的广义版本。(For例如,我们生活的空间是三维的,如果包括时间,我们就在四维宇宙中。为了理解这些类型的高维物体,人们试图找到最好的方法来测量它们的距离,使用最少的能量,并最大限度地提高空间的对称性。该计划的目标是在这样的空间上定义适当的能量,并寻找使总能量最小的重要的最优几何。用更专业的术语来说,PI的研究是,广义地说,使用偏微分方程的解,这是几何起源,以研究可微流形的性质。PI的主要研究领域是爱因斯坦轨道的去奇异化,K3表面上的Ricci平坦度量序列的构建,标量平坦Kahler ALE度量的全局模空间的构建,以及轨道Yamabe问题的研究。在与Morteza的联合工作中,在渐近双曲Einstein设置中证明了Einstein度量的存在性定理,推广了Biquard在四维中的结果,PI提出了这项工作的几个扩展和推广。在与Hein,Sun和Zhang的持续工作中,PI已经在K3曲面上构建了新的Ricci平坦度量的例子,这些曲面坍缩到一个区间,海森堡流形作为纤维出现在规则的坍缩区域中。这项工作产生了许多有趣的问题,特别是将这些退化与K3表面的极化退化联系起来。 在与Han的合作中,PI提出了一个计划,为无穷远处的某些群构建标量平坦Kahler ALE度量的全局模空间。此外,在与陶菊的合作中,PI已经证明了轨道Yamabe问题的一些不存在性结果,并计划进一步推广。最后,PI致力于整合研究和教育,并在多个层面上培养智力发展。PI一直积极参与数学界的外联和会议组织。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeff Viaclovsky其他文献
Degenerations of LeBrun twistor spaces
勒布伦扭转空间的简并
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nobuhiro Honda;Jeff Viaclovsky;N. Honda;N. Honda - 通讯作者:
N. Honda
Conformal symmetries of self-dual hyperbolic monopole metrics
自对偶双曲单极子度量的共形对称性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nobuhiro Honda;Jeff Viaclovsky - 通讯作者:
Jeff Viaclovsky
Jeff Viaclovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeff Viaclovsky', 18)}}的其他基金
Southern California Geometric Analysis Seminar, Winter 2023
南加州几何分析研讨会,2023 年冬季
- 批准号:
2236605 - 财政年份:2023
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
2105478 - 财政年份:2021
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1405725 - 财政年份:2014
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1105187 - 财政年份:2011
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Pacific Rim Workshop in Geometric Analysis, Vancouver, Summer 2010
环太平洋几何分析研讨会,温哥华,2010 年夏季
- 批准号:
1016317 - 财政年份:2010
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0804042 - 财政年份:2008
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0735928 - 财政年份:2007
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0503506 - 财政年份:2005
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Compactness of Critical Metrics and Some Fully Nonlinear Equations in Conformal Geometry
共形几何中关键度量的紧性和一些完全非线性方程
- 批准号:
0202477 - 财政年份:2002
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
9902380 - 财政年份:1999
- 资助金额:
$ 20.38万 - 项目类别:
Fellowship Award
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
2141297 - 财政年份:2021
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
2105478 - 财政年份:2021
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
- 批准号:
2005311 - 财政年份:2020
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 20.38万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
1955992 - 财政年份:2020
- 资助金额:
$ 20.38万 - 项目类别:
Standard Grant